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Summary

In today’s highly distributed and heterogeneous world of the Internet, sharing resources has
become an everyday activity of every Internet user. We buy and sell goods over the Internet,
share our holiday pictures using facebook™, “tube” our home videos on You Tube™, and
exchange our interests and thoughts on blogs. We podcast, we are Linkedin™ to extend our
professional network, we share files over P2P networks, and we seek advice on numerous
on-line discussion groups. Although in most cases we want to reach the largest possible
group of users, often we realise that some data should remain private or, at least, restricted
to a carefully chosen audience. Access control is no longer the domain of computer security
experts, but something we experience everyday.

In a typical access control scenario, the resource provider has full control over the pro-
tected resource. The resource provider decides who can access which resource and what
action can be performed on this resource. The set of entities that can access a protected re-
source can be statically defined and is known a priori to the resource provider. Although still
valid in many cases, such a scenario is too restrictive today. The resource owner is not only
required, but often wants to reach the widest possible group of users, many of which remain
anonymous to the resource provider. A more flexible approach to access control is needed.

Trust Management is a recent approach to access control in which the access control de-
cision is based on security credentials. In a credential, the credential issuer states attributes
(roles, properties) of the credential subject. For the credentials to have the same meaning
across all the users, the credentials are written in a trust management language. A special
algorithm, called a compliance checker, is then used to evaluate if the given set of creden-
tials is compliant with the requested action on the requested protected resource. Finally, an
important characteristic of trust management is that every entity may issue credentials.

In the original approach to trust management, the credentials are stored at a well-known
location, so that the compliance checker knows where to search for the credentials. Another
approach is to let the users store the credentials. Storing the credentials in a distributed way
eliminates the single point of failure introduced by the centralised credential repository, but
now the compliance checker must know where to find the credentials. Another difficulty of
the distributed approach is that the design of a correct credential discovery algorithm comes
at the cost of limiting the expressive power of the trust management language.

In this thesis we show that it is possible to build a generic, open-ended trust management
system enjoying both a powerful syntax and supporting distributed credential storage. More
specifically, we show how to build a trust management system that has:

• a formal yet expressive trust management language for specifying credentials,

• a compliance checker for determining if a given authorisation request can be granted
given the set of credentials,

• support for distributed credential storage.



ii Summary

We call our trust management system TuLiP (Trust management based on Logic Program-
ming).

In the thesis we also indicate how to deploy TuLiP in a distributed content management
system (we use pictures as the content in our implementation). Using the same approach,
TuLiP can improve existing P2P content sharing services by providing a personalised, scal-
able, and password-free access control method to the users. By decentralising the architec-
ture, systems like facebook™ or You Tube™ could also benefit from TuLiP. By providing
easy to use and scalable access control method, TuLiP can encourage sharing of private and
copyrighted content under a uniform and familiar user interface. Also Internet stores, often
deployed as a centralised system, can benefit from using the credential based trust manage-
ment. Here, TuLiP can facilitate the business models in which the recommended clients
and the clients of friendly businesses participate in customised customer rewarding programs
(like receiving attractive discounts). By naturally supporting co-operation of autonomous en-
tities using distributed credentials, we believe that TuLiP could make validation of business
relationships easier, which, in turn, could stimulate creation of new business models.
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I would like to thank Mehmet Akşit, Krzysztof Apt, Willem Jonker, Marten van Sinderen,
Sabrina De Capitani Di Vimercati, and Will Winsborough for accepting the invitation to be
part of the graduation committee of this thesis. It is a great honour for me.

I thank the Freeband consortium for the funding for my research. In particular, I would
like to acknowledge all the members of the I-Share project, especially Inald Lagendijk, Dick
Epema, Johan Pouwelse, Arno Bakker, and Jan-David Mol.

I thank the Distributed and Embedded Security research group for being my scientific
home for more than last four years. Thanks to Angelika, Ari, Damiano, Ileana, Gabriele,
Ha, Jordan, Marnix, Michèl, Mohammed, Nikolay, Pierre, Qiwei, Ricardo, Richard, Yee
Wei, and all the others that I do not mention here for having an enjoyable time together. In



iv Acknowledgements

particular, I would like to thank Ileana Buhan for all the feedback I received from her and
especially for sharing with me her experiences with the publishing process of a Ph.D. thesis.
I also much enjoyed the presence of the recent members of the DIES group: André, Ayse,
Emmanuele, Giorgi, Luan, Mohsen, Qiang, Saeed, Svetla, Trajce, Wolter, and Zheng. Here, I
am especially grateful to Ayse Morali, Saeed Sedghi, and Mohsen Saffarian for all the honest,
friendly discussions we had. I also would like to thank our secretaries: Marlous, Nicole, and
especially Nienke who was always there ready to help me. I have special regards to Fred
Spiessens from the Security group at the Technical University of Eindhoven: I really enjoyed
the discussions we had in Trondheim (and not only there).

I also appreciate the possibility to share my research results with the colleagues from the
Security Ph.D. Association Netherlands (SPAN). In particular I would like to mention Jing
Pan and Hugo Jonker with whom I had interesting (not only scientific) discussions.

I like to thank my Polish colleagues Anna Zych, Paweł Garbacki, Łukasz Chmielewski,
Piotr Kordy, and Przemysław Pawelczak. The possibility to talk to someone with the same
historical background was always a valuable intellectual refreshment. I am grateful to my
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Herda, Piotr Kleczyński and all members of the Sterkom team, and Wojtek Mielke. I am
grateful to Father Rafał Golianek and Hubert Niewiadomski who agreed to be my paranim-
phen.

I owe special thanks to my family: especially to my father who died in 2000, my mother,
and my two sisters. Kim jestem dzisiaj, zawdzięczam również Wam.
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CHAPTER 1

Introduction

An important aspect of computer security is access control. In a typical access control sce-
nario there is one entity, the requester, which wants to access a protected resource, and a
second entity, which is the resource provider. Typically, the resource provider decides if the
request can be authorised or not based on the identity of the requester, its role, or attributes
the requester possesses. The resource provider has full control over who can access which re-
source and what kind of action can be performed on that resource. The resource provider and
the requester are the only entities involved in making the authorisation decision. In such a
simple situation, the resource provider knows all the entities that want to access her protected
resources and, even more importantly, the resource provider feels competent in assigning and
evaluating the rights of each specific requester.

The simple scenario above does not apply to today’s highly distributed and heterogeneous
world of the Internet.The resource provider may be interested in providing her services to a
broader group of users hitherto unknown or even anonymous to the resource provider. Also
the requesters may not know in advance which resource providers are most appropriate to
satisfy their needs.To be able to deal with different requesters coming from different security
domains, we need a more generic and open-ended solution. The following example (we use
the scenario presented in this example throughout the thesis) illustrates the transition from
traditional access control to a more flexible solution brought to us by Trust Management:

Example 1.1 Electronic on-line store eStore gives 10 % discount to registered clients who
are students of the University of Twente (UT). Alice and Bob are students and are registered
clients of the eStore. The registration is a simple process. A student visits eStore, fills
in a registration form and shows the student id card. An employee of eStore reviews the
registration form and, if everything is in order, an appropriate student record is added to a
database holding the registered customers. The database storing the registered students can
then be used to decide who gets a discount and who does not (Fig. 1.1).
When a student of the UT visits the store on-line, in order to claim the discount, the student
must prove her identity so that the store can check if the requester is a registered client who
is also a student.
Imagine now that eStore wants to extend the offer by serving the students from other univer-
sities or even from universities in different countries. Now eStore has a problem as eStore
does not feel competent to validate the student id coming from a university other than the
UT. To solve the problem, eStore should ask some external entity to check if the client is a
student.
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Fig. 1.1: The illustration of the scenario presented in Example 1.1

This would simplify the process for eStore by eliminating the need for complex registra-
tion procedure and would allow eStore to concentrate on the job eStore does the best: selling
things.

Using the language of Trust Management, eStore would like to delegate the authority of
deciding whether the requester is a student to some other entity which is more competent to
make this decision. To accomplish this, in the Trust Management approach, eStore issues a
credential in which eStore states which authorisation is being delegated and to whom. For
instance, eStore may issue a credential in which eStore says that each student of the UT is
eligible for a discount at eStore. The UT, in turn, for each student of the UT, may issue a
credential in which the UT says that the given entity is a student of the UT. By evaluating
the credentials, eStore may check if the requester should receive a discount at eStore. As
we show it later in this section, by issuing additional credentials, eStore can handle students
coming from other universities as well.

In Trust Management (TM), an access control decision is made by evaluating a set of
credentials. An algorithm used for the evaluation of the credentials is called a compliance
checker. The compliance checker is independent from the concrete implementation, which
means that the result of the evaluation of the set of credentials should be the same regardless
of the compliance checker being used (in other words, the proof is in the credentials not in
the compliance checker). This is important because it allows the construction of a general
purpose compliance checker which can be used in any application regardless of the actual
security requirements.

Each entity has the right to issue a credential which can then be used by other entities to
check compliance. The entity which issues the credential is called the credential issuer, and
the entity receiving the authorisation defined in the credential is called the credential subject.

Example 1.2 Let us continue Example 1.1 and see how eStore can use Trust Management
to build a more scalable service. Instead of storing the data of all registered students, eStore
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Fig. 1.2: The proof that Alice is eligible for a discount at the eStore (Example 1.2)

says that “any student of an accredited university has a discount”. eStore delegates the author-
ity of deciding which university is accredited to the University Accreditation Board (ABU).
Similarly, ABU delegates the authority of deciding who is a student to every university that
is accredited by ABU. Now eStore can check if an entity is a student by first checking if
this entity is authorised by some university to use the role student and then by checking if
this university is accredited by ABU. Figure 1.2 illustrates the process of proving that Alice
is eligible for a discount at eStore. In the figure, we see the credentials being used in the
proof (boxes labeled C1, C2, C3) and the itermediate results constructed by the compliance
checker during the processing (the two remaining boxes). Given credentials C1 and C2, the
compliance checker can infer that a student of the UT can have a discount. Then, having also
credential C3, the compliance checker can conclude that Alice is a student of an accredited
university and therefore can have a discount at the eStore.

The example above shows how trust management makes access control more manage-
able. Before, eStore had to keep track of the data of every registered student. Now eStore
uses one credential in which eStore delegates the authorisation to ABU and, indirectly, to each
accredited university. Similarly, ABU had to keep record only of the accredited universities,
and each university must know only its own students. Everyone is doing its job.

Example 1.2 also shows the “trust” component of a trust management system. By dele-
gating authority to another entity, eStore trusts that this entity will behave appropriately. In
Example 1.2, eStore trusts that ABU accredits only real universities. Similarly, eStore and
ABU trust accredited university to issue a student credential only to a real student. Enforcing
the correct behaviour is a research problem on its own (known as a problem of the policy en-
forcement) and is outside the scope of this thesis. Instead, we focus on deciding what correct
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behaviour is (i.e. compliance), which is a hard problem by itself.
Summarising, in the simplest form, a trust management system has the following two com-
ponents:

1. A language (called a trust management language) for specifying credentials,

2. A compliance checker, which is a service for determining if a given authorisation re-
quest can be proven true given the set of credentials.

3. A policy enforcment scheme (beyond the scope of the thesis).

A language for specifying credentials should be expressive enough to satisfy the needs
of different users while having a well-defined formal declarative semantics. The compliance
checker should be proven sound and complete with respect to the declarative semantics of
the trust management language yet should be easy to implement and use.

As mentioned above, security credentials can be issued by different entities. In the origi-
nal idea of trust management [27, 28], it is assumed that the credentials are always available
(i.e. all credentials are stored in some well-known location or there exists some mechanism
that guarantees that the required credentials can be found). Li et al. [67] point out that
credential distribution is a hard research problem on its own and they investigate possible
storage options. Li et al. define a problem of a credential chain discovery which is that of
finding a chain of credentials which proves that given request is true. Not being able to find
a credential chain is the same as saying that there is no proof for the request, which means
that the request cannot be authorised.

Example 1.3 Continuing Example 1.2, the most intuitive credential deployment scheme is
when all credentials are stored by the credential issuer: credential (C1) at eStore, credential
(C2) at ABU, and credential (C3) at the UT. In this scenario all required credentials can be
found simply by first fetching (C1) from eStore, credential (C2) form ABU, and credential
(C3) from the UT. This storage configuration has the disadvantage that one may need to
query many accredited universities (i.e. TUD, TU/e, UvA, . . . ) before finding the university
listing Alice as a student. Another possibility is to store credential (C1) at eStore, credential
(C2) at UT, and credential (C3) at Alice. Here, in constructing the proof of compliance, one
can directly ask Alice if she is a student of some university and the request an “accredita-
tion” credential from that university. Not every storage scheme, however, guarantees that the
required credentials will be found. For instance, if credential (C1) is stored at eStore and cre-
dentials (C2) and (C3) are both stored at the UT, then there is no way of finding credentials
(C2, C3) and the query “is Alice eligible for a discount” would be answered negatively.

The list of the components a (distributed) trust management system should have becomes the
following:

1. a trust management language,

2. a compliance checker,

3. support for the distributed credential storage.
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Our requirements are not satisfied by the existing Trust Management systems, which
can be divided into two groups. In the first group we have trust management systems like
PeerTrust [74], PeerAccess [102], orX -TNL [21] that provide an expressive logic-based trust
management language, but which cannot be easily used in practice because of the complex
syntax, no or limitted support for the credential distribution and discovery, and non-existing
implementation. In the second group we have the family of trust management languages
RT, which enjoys intuitive syntax and relatively simple semantics (at least for the simplest
members of the family), supports credential distribution and discovery, but does not scale
well when more sophisticated scenarios need to be modeled. Our goal is to reshape the cre-
dential based trust management world by delivering a system which combines the simplicity,
expressive power, and extensibility of Prolog with the flexibility of distributed credential
storage offered by RT.

Therefore we can formulate our research question as follows:

Can we build a generic open-ended trust management system enjoying
powerful syntax and supporting distributed credential storage ?

In order to answer our research question we need to satisfy the following objectives:

To build a trust management system which:
1. supports flexible policies, and which provides a

simple language to express the policies,

2. provides a flexible method for credential distribu-
tion and discovery.

T
h
e
o
r
y

To implement a compliance checker for such a trust man-
agement system such that this compliance checker, on
one hand, is sound and complete w.r.t. the given seman-
tics of the policy language and, on the other hand, can be
readily deployed on a distributed system.

P
r
a
c
t
i
c
e

Flexible Language (Theory) The trust management system should be flexible enough
to support various needs of the users. In particular, the language for specifying credentials
should allow for expressing the most common access control policies (like threshold or sep-
aration of duty). A trust management language should also be scalable and extensible so that
new (future) policies can be expressed easily. For instance, the language should accommo-
date the extensions allowing the user to express not only credential based but also reputation
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based trust management policies. Finally, the trust management language should have a for-
mal declarative semantics so that the intended meaning of a credential is independent from
the particular realisation of the compliance checker.

Credential Distribution and Discovery (Theory) The trust management system
should provide a well-defined mechanism for planning the credential distribution. The sys-
tem should guarantee the consistence of storage so that the credentials can be found later.
Finally, the information about the credential storage should be part of the declarative seman-
tics of the trust management language so that the meaning of the credentials is idependent
from the concrete implementation of the compliance checker.

Concrete Implementation (Practice) The trust management system should be rela-
tively easy to deploy. By this we mean that a trust management system should not have
heavy requirements on the underlying infrastructure like the need for a complex public key
infrastructure (PKI) or third party authorities. Ideally, it should be possible to build the sys-
tem using of-the-shelf components.

Li et al. [66, 67] show that a system which satisfies some of these requirements can be
built in the form of the RT family of Trust Management languages. They present a stor-
age type system to handle the credential distribution and discovery and they propose the
credential chain discovery algorithm. The algorithm is proven sound and complete. One
inconvenience in the RT framework is that in order to handle more complex access control
policies, one needs to resort to different dialects of the language. Additionally, the storage
information is not reflected in the language itself, which makes the storage type system less
scalable (in fact the storage type system is provided only for the simplest member of the RT
family: RT0). In this thesis we show that one can design a trust management system having
an expressive language, credential discovery algorithm and a storage type system all in one
framework enjoying formal logic based reading.

1.1 Plan of the thesis

Figure 1.3 shows the roadmap of the thesis. We start in Chapter 2 with an introduction to
trust management by presenting the RT family of trust management languages. In Chapter 2
we also present the problem of credential chain discovery and we show how RT solves this
problem. Chapter 2 also presents the extensive related work on trust management and we
discuss the relationship between trust management and reputation systems. The contents of
this chapter was first published as M. R. Czenko, S. Etalle, D. Li, and W. H. Winsborough: An
Introduction to the Role Based Trust Management Framework RT. In Foundations of Security
Analysis and Design IV – FOSAD 2006/2007 Tutorial Lectures, volume 4677 of LNCS, pages
246–281. Springer Verlag, 2007.

In Chapter 3, we extend the RT family with a new member which is able to deal with
non-monotonic policies. The new member is called RT	 and introduces a restricted form
of negation, called negation in context, by the means of the new operator 	. The contents
of this chapter was first published as M. Czenko, H. Tran, J. Doumen, S. Etalle, P. Hartel,
and J. den Hartog: Nonmonotonic Trust Management for P2P Applications. In Proc. 1st
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Fig. 1.3: The roadmap of the thesis
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Fig. 1.4: From Core TuLiP to TuLiP

International Workshop on Security and Trust Management, Electronic Notes in Theoretical
Computer Science (ENTCS), pages 101–116. Elsevier, 2005.

Having analysed the strengths and weaknesses of RT, in Chapter 4 we introduce the the-
oretical foundation for our own trust management system: Core TuLiP. In Core TuLiP we
propose a new logic-based trust management language with uniform syntax and strong logic-
based semantics. We show how to guide the credential distribution by using the mode system,
which is a uniform mechanism indicating which entity should store the credential. Our mode
system is the integral part of each TuLiP system where, in contrast, the type system in the RT
family is only available for the simplest member of the family RT0. Finally, in Chapter 4, we
present the Lookup and Inference AlgoRthm (LIAR) which performs compliance checking
and also discovers and fetches the missing credentials. We prove that LIAR is sound and
complete w.r.t. the declarative semantics of our trust management language. The contents of
this chapter was first published as M. R. Czenko and S. Etalle: Core TuLiP - Logic Program-
ming for Trust Management. In Proc. 23rd International Conference on Logic Programming,
ICLP 2007, Porto, Portugal, volume 4670 of LNCS, pages 380–394, Berlin, 2007. Springer
Verlag.

In Chapter 5, we present Standard TuLiP - a practical realisation of a trust manage-
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ment system based on Core TuLiP. In this chapter we answer typical questions one needs
to answer when deploying a new trust management system like how to encode the creden-
tials for the efficient exchange and evaluation or what the minimal requirements are on the
underlying infrastructure. We also describe a simple distributed contents sharing system
using Standard TuLiP. A short presentation of our demonstration system can be found at
http://dies.cs.utwente.nl/~czenkom/tulip/doc. An example of the mode set register can be
found at http://tulip.webphoto.nl. The contents of this chapter was first published as M. R.
Czenko, J. M. Doumen, and S. Etalle: Trust Management in P2P Systems Using Standard
TuLiP. In Proceedings of IFIPTM 2008: Joint iTrust and PST Conferences on Privacy, Trust
Management and Security, Trondheim, Norway, volume 263/2008 of IFIP International Fed-
eration for Information Processing, pages 1-16, Boston, May 2008. Springer.

After showing that it is possible to implement a trust management language built on the
theory given by Core TuLiP, in Chapter 6 we present a full TuLiP trust management system.
Full TuLiP has solid theoretical foundation of Core TuLiP and formalises the concepts in-
troduced informally when designing Standard TuLiP. Full TuLiP consists of an expressive
trust management language supporting XML content and user-defined constraints, optimised
and extended LIAR algorithm, and a storage type system supporting redundant storage of the
credentials and the constraints.

In the last chapter, Chapter 7 we are going beyond the original research question. We
show the theoretical foundation of grouping and aggregation in logic programming which
can be used in the next generation of the TuLiP trust management system. Grouping and
aggregation are the must-have features of a trust management language if one wants to bridge
the credential based and reputation based trust management in one comprehensive system.

Figure 1.4 illustrates the features provided incrementally by different versions of the
TuLiP trust management system.

1.2 Contributions

Our contributions can be summarised as follows:

1. We design a trust management language which allows us to write access control poli-
cies that depend on the access control policies of other users.

2. We show how to guide the credential distribution and discovery using a mode system.

3. We design a Lookup and Inference AlgoRithm (LIAR), which is our version of the
compliance checker. LIAR answers the authorisation requests by discovering the cre-
dentials and building the proof for the given request at the same time. We prove the
soundness and completeness of the algorithm w.r.t. the standard logic programming
semantics.

4. We provide a proof of concept implementation of the TuLiP trust management system.

5. We provide the theoretical foundation for merging credential based and reputation
based trust management.
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In this thesis we answer our research question positively. Although the integration with
the reputation based trust management is not yet fully addressed, we show in Chapter 7 that,
in principle, this can be accomplished.



CHAPTER 2

An Introduction to the
Role Based Trust
Management Framework
RT

In this chapter we set the context for the whole thesis by presenting one of the most successful
credential-based trust management systems: RT. RT is a family of Role Based Trust Manage-
ment (TM) languages with RT0 being its simplest member. RT0 is a simple yet powerful trust
management language which allows us to capture the intuition behind credential-based trust
management and to familiarise the reader with the challenges all trust management systems
face. In the chapter we present a detailed syntax and semantics of RT0 and we show how
RT0 deals with credential distribution and discovery by presenting the storage type system
and the algorithms for the credential discovery.

We also present other members of the RT family by showing examples involving different
dialects of RT. By showing a broad range of examples we hope the reader will understand
of the expressive power a trust management system should provide to satisfy diverse require-
ments. On the other hand, we want to show that RT, although being successful in achieving
its goals, leaves space for improvement in terms of flexibility of the syntax and ease of use.
Here we also introduce our extension to RT, RT	, which provides a carefully controlled form
of non-monotonicity. A formal treatment of RT	 is the subject of the next chapter of this
thesis.

Finally, we discuss related work on trust management and the relationship between trust
management and reputation systems.

The contents of this chapter was first published as M. R. Czenko, S. Etalle, D. Li, and
W. H. Winsborough. An Introduction to the Role Based Trust Management Framework RT.
In Foundations of Security Analysis and Design IV – FOSAD 2006/2007 Tutorial Lectures,
volume 4677 of LNCS, pages 246–281. Springer Verlag, 2007.
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2.1 Introduction

The problem of guaranteeing that confidential data is not disclosed to unauthorised users
is paramount in our IT-dominated world. This problem is usually solved by implementing
access control techniques. Traditional access control schemes make authorisation decisions
based on the identity, or the role of the requester of a protected resource or service. However,
in decentralised environments, the resource owner and the requester often are unknown to
one another, making access control based on identity ineffective. To give a simple example,
consider the situation in which a bookstore adopts the policy of giving a 10% discount to
students of accredited universities. Although a certificate authority may assert that the name
of the requester is Alice Q. Smith, if this name is unknown to the bookstore, the name itself
does not aid in making a decision whether he is entitled to a discount or not. What is needed
is information about the rights, qualifications, and other characteristics assigned to Alice Q.
Smith by one or more authorities (in our example, the university he attends), as well as trust
information about the authority itself (e.g. is it accredited?).

Trust management [25, 27, 44, 53, 57, 66, 87, 100] is an approach to access control in
decentralised distributed systems with access control decisions based on policy statements
made by multiple principals. In trust management systems, statements that are maintained
in a distributed manner are often digitally signed to ensure their authenticity and integrity;
such statements are called credentials or certificates. A key aspect of trust management is
delegation: a principal may transfer limited authority over one or more resources to other
principals.

RT [65, 66, 67] is a family of Role Based Trust Management languages introduced by
Li, Winsborough and Mitchell. At its most abstract, the notion of role used is simply a set
of principals. The primary application of RT is intended to be authorisation and access con-
trol, and the main purpose of roles is to confer to their members access to specific resources.
Nevertheless, roles can also be used in a more general way. For instance, membership in the
role of student at the University of Texas may entail certain privileges, but serves to char-
acterise the status of its members more generally. Such characterisations facilitate granting
new privileges to entire classes of users.

This chapter is meant as an introduction to the RT family of trust management languages.
It contains a thorough description of RT0 which is the core language of the family, and some
examples of the more sophisticated members: RT1, RT2, RTT, RTD [66], and the later RT	,
described in Chapter 3. Concerning RT0, this chapter describes in detail, syntax, seman-
tics, decentralised storage and credential chain discovery. Technically, the content of this
chapter derives directly from the original papers [66, 67], with some changes which sim-
plify the exposition while maintaining generality: in particular we employ a restriction on
queries that simplifies the definition of credential graph (see Remark 2.3.1). We also intro-
duce new pseudo-code versions of the credential chain discovery algorithms that we believe
to be clearer than the originals.

The chapter is structured as follows: in Sect. 2.2 we present the syntax and the semantics
of RT0- the core member of the RT family. We also show several examples showing possible
application areas for RT0. In Sect. 2.3 we present the credential chain discovery algorithm.
Here we define the backward, forward, and bidirectional search algorithms. Section 2.4
presents the storage type system for RT0 and Sect. 2.5 shows by example other members of
the RT family and their expressive power. Finally in Sect. 2.6 we present the related work
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and in Sect. 2.7 we give conclusions.

2.2 RT0

The RT framework encompasses a number of languages which have the same basic structure,
while offering different features. The main members of the RT family are RT0, RT1, RTT,
and RTD. Here we focus on the core member of RT: RT0. Later, in Sect. 2.5, we present
examples of the features of RT1, RTT, and RTD.

2.2.1 Syntax

The basic constructs of RT0 are entities, role names and roles. An Entity is also often called a
principal, and can be a computer agent or an individual. An entity can define roles, issue cre-
dentials, and make requests. An entity can define roles, issue credentials, and make requests.
In general, an entity may be identified by a public key, or by a user account; following Li et
al. [67], we abstract away from the mechanism used for identifying entities. We denote an
entity by a name starting with an uppercase letter (possibly with a subscript), e.g. A, B, B1,
and Alice are all entities. A role name, on the other hand, is denoted by a string starting with
a lowercase letter (possibly with a subscript), like r, r1, and student.

Finally, a role has the form of an entity followed by a role name, separated by a dot. For
example, A.r, B.r1, and University.student are valid roles. The notion of a role is central
to RT0. A role A.r denotes the set of entities that are members of this role – a set that we
refer to informally by members(A.r). A is called the owner of the role A.r, and is the only
authority that can directly determine which are the members of A.r.

A permission in RT0 is represented by a role. For example, the permission to read a
confidential document on a corporate network of a company C can be represented by role
C.readConfidential: in this case, an entity has read permission if and only if the entity be-
longs to members(C.readConfidential). Other roles are used to represent other properties,
sometimes called attributes, that characterise the members or their relationship to the role
owner. For example, membership in C.employee might indicate an employment relationship
with C. This example illustrates one aspect of how RT supports decentralisation by making
the entity with which one has an employment relationship explicit. In RT there is no notion
of simply being employed without mentioning the entity whose judgement is being asserted
or whose consent makes it so.

There are four types of credentials in RT0 that an entity A can issue, each corresponding
to a different way of defining the membership of A.r:

• Simple Member: A.r ←− D.

With this credential A asserts that D is a member of A.r.

• Simple Inclusion: A.r ←− B.r1.

With this credential A asserts that A.r includes (all members of) B.r1. This represents
a delegation from A to B, as B may cause new entities to become members of the role
A.r by issuing credentials defining (and extending) B.r1.
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• Linking Inclusion: A.r ←− A.r1.r2.

A.r1.r2 is called a linked role. With this credential A asserts that A.r includes B.r2
for every B that is a member of A.r1. This represents a delegation from A to all the
members of the role A.r1.

• Intersection Inclusion: A.r ←− B1.r1 ∩B2.r2.

B1.r1∩B2.r2 is called an intersection. With this credentialA asserts thatA.r includes
every principal who is a member of both B1.r1 and B2.r2. This represents partial
delegation from A to B1 and to B2.

In the original paper introducing RT0 [67], the number of intersection elements in the
intersection inclusion credentials is unlimited. Also, each intersection element can be either
a role or a linked role. Here we restrict the number of intersection elements to two and
require that each intersection element be a role. This makes the description easier to follow
and simplifies some definitions. However it imposes no restriction on the expressive power
of the language. A credential of the more general form can be replaced by several of the
more restricted credentials presented above by introducing auxiliary roles, splitting longer
intersections into several intersection inclusions, and introducing a linking inclusion for each
linked role.

A policy is a finite set of credentials. We use the term role expression for any entity,
role, linked role, or intersection; thus each RT0 credential has the form A.r ←− e, where
e is a role expression. Such a credential means that members(e) ⊆ members(A.r). We
say that this credential defines the role A.r. Further, we call A the issuer, e the body and
each entity occurring syntactically in e a subject of this credential. To be precise, the set
base(e) of subjects of A.r ←− e is defined as follows: base(A) = {A}, base(A.r) = {A},
base(A.r1.r2) = {A}, and base(B1.r1∩B2.r2) = base(B1.r1) ∪ base(B2.r2) = {B1, B2}.

2.2.2 Semantics
In this section, we present the declarative semantics of RT0. We follow Li et al. [66] and do
this in terms of the semantics for logic programs by providing a translation of a policy C to a
Datalog program, which we call the semantic program. The set-theoretic semantics for RT0

can be found in Li et al. [67].
Given a set C of RT0 credentials (i.e. a policy) the corresponding semantic program,

SP(C), is a Datalog program with one ternary predicate m. Intuitively, m(A, r,D) indicates
that D is a member of the role A.r. Given an RT statement c ∈ C, the semantic program of
c, SP(c), is defined as follows (identifiers starting with “?” are logical variables):

SP(A.r ←− D) = m(A, r,D).
SP(A.r ←− B .r1 ) = m(A, r, ?X) :− m(B, r1, ?X).

SP(A.r ←− A.r1 .r2 ) = m(A, r, ?X) :− m(A, r1, ?Y ),m(?Y, r2, ?X).
SP(A.r ←− B1 .r1 ∩ B2 .r2 ) = m(A, r, ?X) :− m(B1, r1, ?X),m(B2, r2, ?X).

SP extends to a set of statements as expected: SP(C) = {SP(c) | c ∈ C}. Finally, given
a policy C, the semantics of a role A.r ∈ C is defined in terms of atoms entailed by the
semantic program.
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Definition 2.2.1 (Semantics of a Role) Let C be an RT0 policy, and let SP(C) be the corre-
sponding semantic program. The semantics of a role is defined as follows:

[[A.r]]SP(C) = {D |SP(C) |= m(A, r,D)}.

2.2.3 Examples
We now present some examples presenting how RT0 can be used in different application
areas. We begin with an example from Li et al. [67], showing a typical scenario from the
area of electronic commerce.

Example 2.1 EPub is an electronic publishing company that offers a special discount to
anyone who is both a preferred customer of the sister organisation, EOrg, and an ACM mem-
ber. Alice is both. We have the following set C of credentials:

(1) EPub.spdiscount ←− EOrg.preferred ∩ ACM.member
(2) EOrg.preferred ←− EOrg.university.student
(3) EOrg.university ←− ABU.accredited
(4) ABU.accredited ←− StateU
(5) StateU.student ←− RegistrarB.student
(6) RegistrarB.student ←− Alice
(7) ACM.member ←− Alice
(8) ACM.member ←− Bob

The semantic program, SP(C), corresponding to the above policy is:

(1) m(EPub, spdiscount, ?X) :− m(EOrg, preferred, ?X),m(ACM,member, ?X).
(2) m(EOrg, preferred, ?X) :− m(EOrg, university, ?Y ),m(?Y, student, ?X).
(3) m(EOrg, university, ?X) :− m(ABU, accredited, ?X).
(4) m(ABU, accredited, StateU).
(5) m(StateU, student, ?X) :− m(RegistrarB, student, ?X).
(6) m(RegistrarB, student,Alice).
(7) m(ACM,member,Alice).
(8) m(ACM,member,Bob).

The semantics of the roles defined by the set of credentials above is then the following:

[[EPub.spdiscount]]SP(C) = {Alice}
[[EOrg.preferred]]SP(C) = {Alice}
[[ACM.member]]SP(C) = {Alice, Bob}
[[EOrg.university]]SP(C) = {StateU}
[[ABU.accredited]]SP(C) = {StateU}
[[StateU.student]]SP(C) = {Alice}
[[RegistrarB.student]]SP(C) = {Alice}

We see then that only Alice is eligible for a discount as Bob, though being a member of ACM,
is not a student of an accredited university.
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This example shows the basic use of the delegation (simple inclusion) and also how the
linking inclusion can be used to build a scalable policy. For instance, by adding new members
to role ABU.accredited one can extend the number of beneficiaries of a discount offered by
EPub without directly contacting EPub or EOrg and changing their credentials.

The next example presents the use of RT0 in collaborating organisations. This example
originally appeared in Etalle and Winsborough [46].

Example 2.2 Consider the situation in which two companies: CITA (in Italy) and CUS (in
the US), work on a joint project. CITA and CUS, have different management structures:

CITA.partner ←− Antonio
CITA.manager ←− Luca
CITA.programmer ←− Sandro
CITA.all ←− CITA.partner
CITA.all ←− CITA.manager
CITA.all ←− CITA.programmer

CUS.ceo ←− Bob
CUS.employee ←− John
CUS.employee ←− David
CUS.all ←− CUS.ceo
CUS.all ←− CUS.employee

In both companies there is an agreement that employees may trust all the sources that are
trusted by the partner (resp. ceo). They can – of course – trust other sources as well.

Luca.partner ←− CITA.partner
Luca.trusted ←− Luca.partner.trusted
Sandro.partner ←− CITA.partner
Sandro.trusted ←− Sandro.partner.trusted

John.ceo ←− CUS.ceo
John.trusted ←− John.ceo.trusted
David.ceo ←− CUS.ceo
David.trusted ←− David.ceo.trusted

CITA and CUS decide to join forces on projX, and they agree that most of the documents
developed in projX should be accessible only to people working on the project, and that
some particularly confidential documents should circulate only among the senior personnel.
To implement this, the two companies agree to employ the role names projX and seniorprojX.
In CITA, the partner decides who participates in projectX, and decides (in agreement with
CUS) that the managers of CITA should be considered senior people, while in CUS, the ceo
delegates to John the definition of the projectX team as well as of the senior people in it.
Finally, CITA and CUS trust each other’s definitions of (senior) people working on projectX.
This policy is described and implemented by the following set of credentials.

CITA.projX ←− Antonio.projX
CITA.seniorprojX ←− CITA.partner
CITA.seniorprojX ←− CITA.projX ∩ CITA.manager
Antonio.projX ←− Luca
Antonio.projX ←− Sandro
CITA.projX ←− CUS.projX
CITA.seniorprojX ←− CUS.seniorprojX
CUS.projX ←− John.projX
CUS.seniorprojX ←− CUS.ceo
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CUS.seniorprojX ←− John.seniorprojX
John.seniorprojX ←− John
John.projX ←− John
John.projX ←− David
CUS.projX ←− CITA.projX
CUS.seniorprojX ←− CITA.seniorprojX

Example 2.2 shows again that by the proper use of the delegation (simple inclusion) and the
linking inclusion one can build a sophisticated policy handling complex hierarchical relation-
ships in an organisation. The example demonstrates that complex policies can be effectively
modeled and still are easy to manage and understand.

The following two examples were initially presented by Winsborough and Li in [101].
The first of them shows an example of a co-operation between banking institutions and uni-
versities when providing financial support for students. Then, we show an example of poli-
cies that can be used by medical suppliers and charity organisations when handling natural
disasters.

Example 2.3 A bank wants to know whether an entity is a full time student in order to
determine whether the entity is eligible to defer repayment on a guaranteed student loan
(GSL). (The US government insures banks against default of GSLs and requires participating
banks to allow full-time students to defer repayments.) The StateU university may define its
full-time student attribute by the following two credentials:

StateU.fullTimeStudent ←− RegistrarB.fullTimeStudent
StateU.fullTimeStudent ←− StateU.phdCandidate ∩ RegistrarB.partTimeStudent

We see that StateU says that one is a full-time student if either RegistrarB says so, or if one
is registered as a Ph.D. candidate at StateU and considered part-time student by RegistrarB.
The following credentials, together with the above ones, show thatBob is a full-time student,
i.e. Bob ∈ [[StateU.fullTimeStudent]]SP(C):

StateU.phdCandidate ←− StateU.gradOfficer.phdCandidate
StateU.gradOfficer ←− Carol
Carol.phdCandidate ←− Bob
RegistrarB.partTimeStudent ←− Bob

Now, assume that StateU is certified by accreditation board ABU.

ABU.accredited ←− StateU

If universities define fullTimeStudent appropriately (for example, as done by StateU above),
BankWon can issue credentials like those below to grant loan-deferment permission (denoted
by BankWon.deferGSL) to students like Bob.

BankWon.deferGSL ←− BankWon.university.fullTimeStudent
BankWon.university ←− ABU.accredited

One can check that Bob ∈ [[BankWon.deferGSL]]SP(C).
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Example 2.3 shows again how flexible is RT0. Here, by using delegation

BankWon.university ←− ABU.accredited

and the linking inclusion

BankWon.deferGSL ←− BankWon.university.fullTimeStudent

any full time student of an accredited university can be granted a deferred GSL.

Example 2.4 In the aftermath of a large natural disaster, MedSup, a medical supply mer-
chant, offers to sell at a discount medical supplies to be used in the official clean up, which is
being organised by a coalition called ReliefNet. Alice works for MedixFund, one of several
charity organisations that use private contributions to obtain emergency medical supplies for
emergency teams working at the disaster site. The following four credentials show that Alice
is authorised for the discount.

(1) MedixFund.pA ←− Alice
(2) ReliefNet.coaMember ←− MedixFund
(3) MedSup.partner ←− ReliefNet.coaMember
(4) MedSup.discount ←− MedSup.partner.pA

Prior to joining the coalition, MedixFund issued credential (1), which states that Alice is
a purchasing agent for the fund. One of ReliefNet’s responsibilities is to identify coalition-
member organisations, as it does in credential (2). MedSup recognises these organisations as
its coalition partners, as in credential (3), and offers discounted sales to the purchasing agents
of those partners, as stated in credential (4). In this example, the judgements of MedixFund,
ReliefNet, and MedSup are combined to authorise Alice’s receiving a discount from MedSup.

In the example above, when MedSup enters into another coalition, it can add an additional
credential defining MedSup.partner to give the discount to the purchasing agents of its new
partners. This is possible again thanks to using the simple inclusion and linking inclusion
credentials.

With the increasing popularity of the P2P networks and their excellent support for sharing
of user generated content, a high demand for flexible user-oriented policies can be observed.
Below, we show an example of how RT0 facilitates the use of personal policies in a hetero-
geneous P2P environment.

Example 2.5 Charles wants to share his pictures using a P2P file sharing system. He gives
access to his gallery to his friends, friends of his friends, friends of firends of his friends,
etc. For his movie collection, Charles applies a somewhat stronger policy: to access it, one
has to be a member of Charles’s friend role, and a member of the film club Charles is also a
member of. The set of credentials, C, modelling this scenario is shown below:

Charles.accessMovies ←− Charles.friend ∩ Charles.filmClub
Charles.accessPictures ←− Charles.friend
Charles.friend ←− Charles.friend.friend
Charles.friend ←− Alice
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Charles.friend ←− Bob
Charles.filmClub ←− Johan
Alice.friend ←− Jeffrey
Bob.friend ←− Johan
Johan.friend ←− Sandro

Example 2.5 emphasises the fact that the delegation depth in RT0 is unlimited. In the exam-
ple, Charles’s role friend contains not only friends of his friends, but also friends of friends of
his friends and so on (friends is a transitive closure of the set of Charles’s friends). Therefore,
for the given set of credentials, we have the following semantics:

[[Charles.accessMovies]]SP(C) = {Johan}
[[Charles.accessPictures]]SP(C) = {Alice, Bob, Jeffrey, Johan, Sandro}

2.3 RT0: The Credential Chain Discovery Algorithm
We have seen how RT0 can be used to define roles and how roles can represent permissions or
attributes. We now illustrate the mechanisms needed to answer the queries in the RT system.
To set the stage, let us first enumerate the three sorts of queries we need to cope with. Let C
be a set of credentials.

Sort 1 Given a role A.r and an entity D, determine whether D ∈ [[A.r]]SP(C).

Sort 2 Given a role A.r, determine its member set, [[A.r]]SP(C).

Sort 3 Given an entity D, determine all the roles it is a member of, i.e. generate the set
{A.r | D ∈ [[A.r]]SP(C)}.

Notice that while queries of Sort 1 simply require a yes/no answer, the other two sorts require
to generate a whole set. Also, notice that queries of Sort 2 and 3 are strictly more expressive
than queries of Sort 1: if we are able to answer a query of Sort 2 or 3 we are certainly able
to answer a query of Sort 1, while the opposite is not true. At this stage, one might wonder if
Sort 3 queries are actually needed. This will become clear in the sequel.

Remark 2.3.1 Technically, this section is based on Li et al. [67] with the additional simpli-
fying assumption that queries may refer only to roles and principals (and not to role expres-
sions, e.g. we do not allow queries such as “given a role expression A.r1.r2, determine its
member set [[A.r1.r2]]SP(C)”). This assumption allows us to simplify the notation by a great
deal, and does not limit the expressiveness of the framework, as one can always introduce a
new role to take the meaning of a role expression.

The algorithms we present in this section operate on a credential graph, which is a di-
rected graph representing a set C of credentials and is built as follows: each node [e] repre-
sents a role expression e; every credential A.r ←− e in C contributes to the graph an edge
from [e] (the node representing e) to [A.r] (the node representing A.r), which is denoted by
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[A.r] ⇐ [e], and is called a credential edge. A path in the graph from the node [e1] to the
node [e2] consists of zero or more edges and is denoted [e2] ∗⇐ [e1]. Additional edges, called
derived edges, are added to handle linked roles and intersections. These edges are called de-
rived edges because their inclusion in the credential graph comes from the existence of other,
semantically related, paths in the graph.

Given a set C of credentials, we define the following finite structures: Entities(C) is the
set of entities in C, Names(C) is the set of role names in C, and RoleExpressions(C) is the set
of role expressions that can be constructed using Entities(C) and Names(C), i.e.:

RoleExpressions(C) =


A,
A.r1, where A,B1, B2 ∈ Entities(C),
A.r1.r2, r1, r2 ∈ Names(C)
B1.r1 ∩B2.r2

The following definition is a simplified version of Definition 2 given by Li et al. [67]
(see Remark 2.3.1). Thanks to this simplification we can restrict our attention to the basic
credential graph and avoid some complexities from the original presentation.

Definition 2.3.2 (Basic Credential Graphs) Let C be a set of RT0 credentials. The basic
credential graphGC relative to C is defined as follows: the set of nodesNC = RoleExpressions
(C) and the set of edges EC is the least set of edges over NC that satisfies the following three
closure properties:

• Closure property 1: If A.r ←− e ∈ C, then [A.r]⇐ [e] ∈ EC . [A.r]⇐ [e] is called a
credential edge.

• Closure property 2: If there exists a path [A.r1] ∗⇐ [B] in GC , then ∀r2 ∈ Names(C),
[A.r1.r2] ⇐ [B.r2] ∈ EC . We call [A.r1.r2] ⇐ [B.r2] a derived link edge, and
{[A.r1] ∗⇐ [B]} is a support set for this edge.

• Closure property 3: If D,B1.r1 ∩ B2.r2 ∈ NC , and there exist paths [B1.r1] ∗⇐ [D]
and [B2.r2] ∗⇐ [D] in GC , then [B1.r1 ∩ B2.r2]⇐ [D] ∈ EC . This is called a derived
intersection edge, and {[B1.r1] ∗⇐ [D], [B2.r2] ∗⇐ [D]} is a support set for this edge.

The set of edges EC can be constructed inductively as follows. We start with the set
E0
C = {[A.r]⇐ [e] | A.r ←− e ∈ C} and then construct Ei+1

C from EiC by adding one edge
according to either closure property 2 or 3. Since NC is finite, the order in which edges are
added is not important, and the sequence {EiC}i∈N converges to EC .

Example 2.6 Figure 2.1 shows a subset of the basic credential graph for the set of cre-
dentials in Example 2.1. Edges labelled with numbers are credential edges, and the num-
bers correspond to the ones marking credentials in Example 2.1. The two edges without
labels are derived edges: one added by the closure property 2 ([EOrg.university.student]⇐
[StateU.student]), and one by the closure property 3 ([EOrg.preferred ∩ ACM.member] ⇐
[Alice]).

Li et al. [67] shows that the credential graphs are sound and complete w.r.t. to the
set-theoretic semantics: if there is a path [e2] ∗⇐ [e1] in any GC , then expr[SC ](e2) ⊇
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expr[SC ](e1), and if D ∈ expr[SC ](e0), then there exists path [e0] ∗⇐ [D] in GC . Here
expr[SC ](e) is the set-theoretic semantics of a role expression e, which can be proven in a
straightforward way to be equivalent to the LP based semantics we have introduced in Sect.
2.2.2.

Fig. 2.1: The subset of the credential graph for the set of credentials in Example 2.1 containing path
from EPub.spdiscount to Alice

Therefore, given a set C of credentials, we can answer each of the queries enumerated at
the beginning of this section by consulting a basic credential graph of C. Constructing the
path [A.r] ∗⇐ [D] alone proves that D ∈ [[A.r]]SP(C), provided that each derived edge has at
least one support set. The portion of the credential graph that must be constructed for it is
what we call a credential chain.

Definition 2.3.3 (Credential Chains) Given a set C of credentials, a role A.r, and an entity
D, a credential chain from D to A.r, denoted 〈A.r � D〉, is a minimal subset of EC con-
taining a path [A.r] ∗⇐ [D] and also containing a support set for each derived edge in the
subset.

The chain discovery starts at the node representing the requester, or at the node repre-
senting the role (permission) to be proven, or both, and then traversing paths in the graph
trying to build an appropriate chain. In addition to being goal-directed, this approach allows
the elaboration of the graph to be scheduled flexibly. Also, the graphical representation of
the evaluation state makes it relatively straightforward to manage cyclic dependencies.

In the rest of this section we illustrate the three algorithms originally defined by Li et al.
[67] to answer the three sorts of queries, listed at the top of this section (with the simplifying
assumption illustrated in Remark 2.3.1). The backward search algorithm (also called the
top-down algorithm) (Sect. 2.3.1) answers the second sort of queries, i.e. it determines all
members of a role expression. The forward search algorithm (also called the bottom-up
algorithm) in Sect. 2.3.2 answers the third sort of queries, i.e. it determines all roles that an
entity is a member of. The bidirectional search algorithm (Sect. 2.3.3) answers the first sort
of queries, i.e. it determines whether an entity is a member of a role expression. Note that
in this section we assume that credentials are stored in such a way that we can list them all
at any time. In practice, this is not always the case. We address the problem of distributed
storage in the next section.
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2.3.1 The Backward Search Algorithm

The backward search algorithm can determine all the members of a given role A.r. In terms
of the credential graph, the algorithm finds all the entity nodes that can reach the node A.r,
and for each such entity D, the algorithm constructs a chain 〈A.r � D〉. The algorithm is
called backward because it follows edges in the reverse direction. The algorithm works by
constructing a proof graph, which is a data structure that represents a credential graph and
maintains certain information on the nodes. Listing 2.1 shows the algorithm in pseudo-code
using a Python-like syntax. We have four classes: ProofGraph representing the proof graph,
ProofNode representing proof graph nodes, BLinkingMonitor and BIntersectionMonitor used
to handle linked and intersection roles respectively.

The ProofGraph class stores the set of nodes and the set of edges corresponding to the
set of nodes and the set of edges in the basic credential graph in its instance variables: nodes
and edges respectively. Adding nodes and edges is handled by the addNode() and addEdge()
methods. The main processing is handled by the bProcess() method of the ProofGraph class.
The nodes to be processed are stored in the backward processing queue (bQueue).

Each node in the graph is represented by an instance of the ProofNode class. Each
ProofNode object stores the set of backward solutions in the bSolutions attribute. A so-
lution in the backward search algorithm is an entity. Thus, the bSolutions attribute of the
ProofNode class stores all the entities which are known to be members of the corresponding
role expression. When a new solution D is discovered, every node e such that there is a path
[e] ∗⇐ [D] in the proof graph must be notified about this solution. This is realized using a
well-know observer design pattern. Every instance of the ProofNode class maintains a list of
observers, called backward solution monitors in the text. When a node is notified about one
or more new solutions – by invoking node’s notify() operation – it immediately notifies all the
monitors (observers) of the node using node’s notifyAll() operation. Every node which is not
an entity node (entities do not have any solutions other than themselves) can be registered
as a backward monitor of a node using node’s bAttach() operation. There are two special
backward monitors that are not instances of the ProofNode class: backward linking and in-
tersection monitors. In Listing 2.1 they are represented by two classes: BLinkingMonitor and
BIntersectionMonitor. Linking and intersection monitors realise the basic credential graph
closure properties 2 and 3 respectively.

When processing a linked role A.r1.r2, the algorithm first creates a new node for the
role A.r1, then it creates a backward linking monitor and attaches this monitor to [A.r1].
The backward linking monitor works as follows: when the backward linking monitor cor-
responding to a linked role A.r1.r2 is notified about a new solution B, it means that B
became a member of A.r1. By the closure property 2 in Definition 2.3.2 this implies that
the basic credential graph contains the edge [A.r1.r2]⇐ [B.r2]. The backward linking mon-
itor realises this by creating new node corresponding to role B.r2 and by adding the edge
[A.r1.r2]⇐ [B.r2] to the proof graph (lines (46–50)).

When processing an intersection node [B1.r1 ∩ B2.r2], the algorithm first creates two
new nodes [B1.r1] and [B2.r2], then it creates a backward intersection monitor and attaches
this monitor to these two newly created nodes. When any of these two nodes receives a new
solution D, it notifies all of its backward solution monitors, including the monitor corre-
sponding to B1.r1 ∩ B2.r2. When this monitor is notified about solution D it checks how
many times it observed the addition of entity D. When the counter reaches 2, it adds edge
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[B1.r1 ∩B2.r2]⇐ [D] to the proof graph (lines (52–59)). BIntersectionMonitor has attribute
solutions to monitor how many times the addition of a given solution was observed.

In order to find all members of a role A.r the algorithm is initialised using the following
sequence:

proofGraph = new ProofGraph(C)
proofGraph.addNode(A.r)
proofGraph.bProcess()

Listing 2.1: Backward Search Algorithm

1 class ProofGraph:
def __init__ ():

3 clear (bQueue)
clear (nodes)

5 clear (edges)
def bProcess():

7 while not bQueue.empty():
n = bQueue.dequeue()

9 if n is an entity D:
n.bSolutions.add(D)

11 n.notifyAll(D)
continue

13 if n is a role A.r:
foreach A.r ←− e ∈ C:

15 addNode(e)
addEdge([A.r]⇐ [e])

17 continue
if n is a linked role A.r1.r2:

19 n1 = addNode(A.r1)
n1.bAttach(new BLinkingMonitor(A.r1.r2))

21 continue
if n is an intersection B1.r1 ∩B2.r2:

23 n1 = addNode(B1.r1)
n2 = addNode(B2.r2)

25 m = new BIntersectionMonitor (B1.r1 ∩B2.r2)
n1.bAttach(m)

27 n2.bAttach(m)
continue

29 def addNode(e):
if nodes.contains(e): return getNode(e)

31 n = new ProofNode(e)
nodes.add(n)

33 bQueue.enqueue(n)
return n

35 def addEdge([e2]⇐ [e1]):
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n1 = getNode(e1)
37 n2 = getNode(e2)

if not edges.contains(n2⇐n1):
39 edges.add(n2⇐n1)

if n1.hasSolutions():
41 s = n1.getSolutions()

n2.bSolutions.add(s)
43 n2.notifyAll(s)

n1.bAttach(n2)
45

class BLinkingMonitor(A.r1.r2):
47 def notify ( sols ):

foreach B in sols :
49 proofGraph.addNode(B.r2)

proofGraph.addEdge([A.r1.r2]⇐ [B.r2])
51

class BIntersectionMonitor (B1.r1 ∩B2.r2):
53 def __init__ ():

clear ( solutions )
55 def notify ( sols ):

foreach D in sols :
57 solutions.add(D)

if solutions.count(D) == 2:
59 proofGraph.addEdge([B1.r1 ∩B2.r2]⇐ [D])

61 class ProofNode:
def __init__ ():

63 clear (bMonitors)
clear (bSolutions )

65 def bAttach(m):
bMonitors.add(m)

67 def notify ( solutions ):
bSolutions.add(solutions)

69 notifyAll ( solutions )
def notifyAll ( solutions ):

71 foreach m in bMonitors:
m.notify ( solutions )

Example 2.7 Figures 2.2(a)-(d) illustrate the process of constructing the proof graph by do-
ing backward search from EPub.discount for the following set of credentials C (a subset of
Example 2.1). This corresponds to the query of Sort 1: determine the set of members of
EPub.spdiscount, [[EPub.spdiscount]]SP(C).

(1) EPub.spdiscount ←− EOrg.preferred ∩ ACM.member
(2) EOrg.preferred ←− EOrg.university.student
(3) EOrg.university ←− ABU.accredited
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(4) ABU.accredited ←− StateU
(5) StateU.student ←− RegistrarB.student
(6) RegistrarB.student ←− Alice
(7) ACM.member ←− Alice

In Figs. 2.2(a)-(d), the first line of each node gives the node number (following the order
of creation) and the role expression represented by the node. The second line lists the so-
lutions associated to the node. To help the reader, we have labelled each solution and each
graph edge with the number of the node that was being processed when the solution or edge
was added. In each of the figures dashed edges and nodes are the newly processed nodes
while the newly added solutions are grey. Below we present the process of the construction
of this proof graph.

The algorithm starts the search from EPub.spdiscount. The only credential defining role
EPub.spdiscount is (1). To process this credential, the algorithm adds the new node
[EOrg.preferred ∩ ACM.member] to the proof graph, and inserts this node into the queue of
nodes bQueue (lines (29–34)). Then the algorithm adds a credential edge from
[EOrg.preferred ∩ACM.member] to [EPub.spdiscount] (Fig. 2.2(a)). We label the edge con-
necting nodes [EOrg.preferred ∩ACM.member] and [EPub.spdiscount] with number 0 to in-
dicate that this edge was added while processing node [EPub.spdiscount]. [EOrg.preferred ∩
ACM.member] is an intersection node. To process this node, the algorithm first creates two
new nodes: [EOrg.preferred] and [ACM.member], and adds them to the processing queue
in this order. Next the algorithm creates an intersection monitor and attaches this moni-
tor to both [EOrg.preferred] and [ACM.member] (lines (22–28, and the two edges labelled
with 1 in Fig. 2.2(a)). This monitor guarantees that if the same solution D appears in both
[EOrg.preferred] and [ACM.member], a derived edge is added from [D] to [EOrg.preferred∩
ACM.member] (lines (52–59)). The next node to process is [EOrg.preferred]. The only cre-
dential defining this role is the linking inclusion EOrg.preferred←−EOrg.university.student.
The algorithm adds node [EOrg.university.student] to the graph, and a credential edge from
this node to [EOrg.preferred] (Fig. 2.2(b)). Next, the node [ACM.member] is processed. Giv-
ing the presence of the credential ACM.member ←− Alice, the algorithm adds a new node
[Alice] to the graph and to the processing queue. This node will be processed after the node
[EOrg.university.student], so we do not add any solution at this stage.

The next node to process is [EOrg.university.student]. As this is a node representing a
linked role, the algorithm first adds new node [EOrg.university] to the proof graph (and also to
the processing queue) and then the algorithm attaches a linking monitor to [EOrg.university]
(lines (18–21 and Edge 4 in Fig. 2.2(b)). This monitor behaves as follows: each time
[EOrg.university] receives a new solution B, the monitor creates a node for B.student and
adds the derived edge from [B.student] to [EOrg.university.student] (lines (46–50)).

The next node to process is [Alice]. As this is an entity node, Alice becomes a solution
of [Alice] and [Alice] notifies all its backward solution monitors: in our case [ACM.member].
The intersection monitor stored by [ACM.member] observes that Alice is the received solu-
tion, but takes no action because Alice has been added only to [ACM.member], and does not
appear as a solution at EOrg.preferred yet.

In a similar manner, [EOrg.university] receives the solution StateU when processing node
[StateU] (Fig. 2.2(c)). After this, the linking monitor stored at [EOrg.university] creates the
new node [StateU.student].
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(a)

(b)

(c)

Fig. 2.2: Backward search from EPub.spdiscount



Section 2.3. RT0: The Credential Chain Discovery Algorithm 27

(d)

Fig. 2.2: Backward search from EPub.spdiscount cont.

When StateU.student receives the solution Alice from [RegistrarB.student] (Fig. 2.2(d)),
this solution is propagated upward to [EOrg.university.student] and [EOrg.preferred]. The
intersection monitor at node [EOrg.preferred] observes that Alice is added for the second
time, this time by means of node [EOrg.preferred], and in response the monitor creates
a derived edge from [Alice] to [EOrg.preferred ∩ ACM.member]. The solution Alice is
then immediately copied from [Alice] to node [EOrg.preferred ∩ ACM.member] and then to
[EPub.spdiscount] (lines (40–43)).

At this point, there are no more nodes to process and the algorithm terminates. Given the
set of credentials shown above, EPub.spdiscount has only one member: Alice.

2.3.2 The Forward Search Algorithm

The forward search algorithm answers queries of the third sort, i.e. it finds all roles that
contain a given entity D0 as a member. The direction of the search moves from the subject
of a credential towards its issuer.

The forward algorithm has the same overall structure as the backward algorithm. It con-
structs a proof graph, maintaining a queue of nodes to be processed; both contain initially
just one node, [D0]. Nodes are processed one by one until the queue is empty. Listing 2.2
reports the algorithm’s pseudo-code.

A solution in the forward search algorithm can be a full solution or a so called partial
solution. A full solution is a role and indicates that the initial node is a member of this
role. Partial solutions are necessary to properly handle intersections (see Closure Property
3 in Definition 2.3.2). Given an intersection B1.r1 ∩ B2.r2 a partial solution has the form
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(B1.r1 ∩ B2.r2, i) where i ∈ {1, 2}. We add the partial solution (B1.r1 ∩ B2.r2, i) to the
node [e] when [Bi.ri] is reachable from [e] (lines (12–13)).

Similarly to the backward processing algorithm, when a node receives either a full, or a
partial solution, it notifies each of its forward solution monitors. The solutions travel through
the edges eventually reaching some other entity node [D]. When [D] is notified about new
partial solution (B1.r1∩B2.r2, i), it checks whether it has the two partial solutions (B1.r1∩
B2.r2, 1) and (B1.r1 ∩B2.r2, 2), and, if so, it adds a derived edge [B1.r1 ∩B2.r2]⇐ [D] to
the proof graph (lines (50–53).

Linking roles are handled using forward linking monitors. A linking monitor is created
when processing a role B.r2. A new node [B] is created and a forward linking monitor
FLinkingMonitor(B.r2) is attached to [B] (lines (16–17)). This monitor, when notified by
[B] about new solution A.r1, creates new node [A.r1.r2] and adds it to the proof graph and
to the forward processing queue. Then, it adds new edge [A.r1.r2] ⇐ [B.r2] to the proof
graph (lines (36–40)).

In order to find all roles A.r an entity D0 is a member of, the algorithm should be ini-
tialised using the following sequence:

proofGraph = new ProofGraph(C)
proofGraph.addNode(D)
proofGraph.fProcess ()

Listing 2.2: Forward Search Algorithm

1 class ProofGraph:
def __init__ ():

3 clear ( fQueue)
clear (nodes)

5 clear (edges)
def fProcess ():

7 while not fQueue.empty():
s = ∅

9 n = fQueue.dequeue()
if n is a role B.r2:

11 s.add(B.r2)
foreach A.r ←− f1 ∩ f2 ∈ C s.t. ∃ i ∈ {1, 2}, fi = B.r2:

13 s.add((f1 ∩ f2, i))
n.fSolutions.add(s)

15 n.notifyAll(s)
n1 = addNode(B)

17 n1.fAttach(new FLinkingMonitor(B.r2))
# get the role expression associated with node n

19 e = n. roleExpression ()
foreach A.r ←− e ∈ C:

21 addNode(A.r)
addEdge([A.r]⇐ [e])

23 def addNode(e):
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if nodes.contains(e): return getNode(e)
25 n = new ProofNode(e)

nodes.add(n)
27 fQueue.enqueue(n)

return n
29 def addEdge([e2]⇐ [e1]):

n1 = getNode(e1)
31 n2 = getNode(e2)

if not edges.contains(n2⇐n1):
33 edges.add(n2⇐n1)

n2.fAttach(n1)
35

class FLinkingMonitor(B.r2):
37 def notify ( solutions ):

foreach A.r1 in solutions:
39 proofGraph.addNode(A.r1.r2)

proofGraph.addEdge([A.r1.r2]⇐ [B.r2])
41

class ProofNode:
43 def __init__ ():

clear ( fMonitors)
45 clear ( fSolutions )

def fAttach (m):
47 fMonitors.add(m)

def notify ( solutions ):
49 fSolutions.add(solutions)

if the node is an entity node D:
51 foreach f1 ∩ f2 s.t. ∀i ∈ {1, 2}∃(f1 ∩ f2, i) ∈ fSolutions:

proofGraph.addNode(f1 ∩ f2)
53 proofGraph.addEdge([f1 ∩ f2]⇐ [D])

else : notifyAll ( solutions )
55 def notifyAll ( solutions ):

foreach m in fMonitors:
57 m.notify ( solutions )

Example 2.8 Figures 2.3(a)-(c) depict the process of constructing the proof graph by for-
ward search from [Alice] for the set of credentials from Example 2.1.

The first line of each node reports the node number in order of creation and the role
expression represented by the node. The second part of a node lists the solutions asso-
ciated to the node. Each solution and each graph edge is labelled with the number of
the node that was being processed when the solution or edge was added. In each of the
figures the dashed edges and nodes are the new ones and the new solutions are grayed.
The process begins from node [Alice] (Fig. 2.3(a)). As [Alice] is an entity node, the algo-
rithm searches for all credentials having Alice as the body. There are two such credentials:
ACM.member ←− Alice and RegistrarB.student ←− Alice. Thus, the algorithm creates
two nodes: [ACM.member] and [RegistrarB.student] and adds a credential edge from [Alice]
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(a)

(b)

Fig. 2.3: Forward search from Alice
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(c)

Fig. 2.3: Forward search from Alice cont.
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to [ACM.member] and a credential edge from [Alice] to [RegistrarB.student]. The next node
to be processed is [ACM.member] (recall that the number in the circle displays the order
of the processing). ACM.member is a role. Therefore, the algorithm first adds to node
[ACM.member] a solution ACM.member. Next, the algorithm checks if there are any in-
tersection credentials having ACM.member in the body. The role ACM.member appears as
the second component of EOrg.preferred ∩ ACM.member in credential (1). Thus, the algo-
rithm adds the partial solution (EOrg.preferred ∩ ACM.member,2) to the solution space of
[ACM.member] (lines (12–13)). The node [ACM.member] notifies all its forward solution
monitors about the new solutions. So, [Alice] receives ACM.member and (EOrg.preferred ∩
ACM.member,2) as its first solutions. Now, the algorithm creates the node [ACM] and a for-
ward linking monitor (edge with number 1 in Fig. 2.3(a)), which is then added as a solution
monitor to [ACM] (lines (16–17)). At any time, this monitor, on observing that [ACM] gets
a full solution A.r, creates the node [A.r.member] and adds the edge from [ACM.member]
to [A.r.member] to the proof graph (lines (36–40)). The node [RegistrarB] is processed in a
similar way. There are no credentials having ACM or RegistrarB as the body, so [ACM] and
[RegistrarB] do not have any solutions. Figure 2.3(a) shows the snapshot of the graph after
processing of node [RegistrarB].

Figure 2.3(b) shows the graph after processing of node [ABU.accredited]. The nodes
[ABU] and [EOrg.university] are the ones added when processing [ABU.accredited] and are
next to be processed. When [StateU] receives the solution [ABU.accredited] its (forward)
linking monitor creates node [ABU.accredited.student].

Figure 2.3(c) shows the complete graph. [EOrg.preferred] has one full solution,
EOrg.preferred, and one partial solution (EOrg.preferred ∩ ACM.member,1), which comes
from the fact that EOrg.preferred is the first component of the intersection in the body of
credential (1). [EOrg.preferred] notifies its forward solution monitors about these two so-
lutions, which eventually reach [Alice]. When [Alice] is notified, since [Alice] has the two
partial solutions corresponding to the intersection EOrg.preferred ∩ ACM.member, [Alice]
creates the intersection node [EOrg.preferred ∩ ACM.member] and the edge from [Alice] to
[EOrg.preferred∩ACM.member]. Finally, [Alice] receives the solution EPub.spdiscount from
[EPub.spdiscount].

2.3.3 The Bidirectional Search Algorithm

The two algorithms presented in Sect. 2.3.1 and Sect. 2.3.2 can also be used to answer the
queries of Sort 1 presented at the top of Sect. 2.3 in which given a role A.r and an entity
D, one wants to determine whether D ∈ [[A.r]]SP(C). This can be done either by using
the backward search and starting from A.r or by using forward search and staring from
D. It is also possible to perform both searches at the same time. Such an algorithm is
called a bidirectional search algorithm. This may not make too much sense at first – as
the bidirectional search algorithm may construct a larger graph than does either backward or
forward search – but as we show later in Sect. 2.4, this may be very useful when the credential
storage is distributed.
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2.4 The Storage Type System

Winsborough and Li argue that a trust management language should have support for dis-
tributed credential storage [101]. In our description so far, we assume that the credential
storage is centralised; more precisely, we have assumed that at any time we can list the whole
set of credentials. Such an assumption is not realistic in practice, as sometimes we may want
to store the credentials at their issuers and sometimes at their subjects (see [67, 101] for a
discussion). Intuitively, the problem with decentralised storage is that one may not know
where to find the credentials needed to build a proof. Let us see an example of this.

Example 2.9 Assume that the policy contains only two credentials:

(1) A.r ←− B.r1

(2) B.r1 ←− D

Now, assume that one wants to know whetherD ∈ [[A.r]]SP(C). Each of these two credentials
could be stored at either its issuer and/or its subject.

First, let us assume that credential (1) is stored at A and credential (2) at D. Using
backward search, we start from node [A.r] by listing all credentials defining A.r. The only
credential stored at A is A.r ←− B.r1, so, the only way to proceed from here is to “go to”
B, but since B does not store any credentials, the backward search algorithm concludes that
[[A.r]]SP(C) is empty. In the forward search algorithm we would start from [D] by searching
for all the credentials having D as the body. D stores only one credential:B.r1 ←− D. The
forward search algorithm then “goes to” B and fetches the credentials B stores. However,
since B does not store any credentials, the forward search algorithm concludes that the only
role D is a member of is B.r. Also, the forward search does not allow us to prove that
D ∈ [[A.r]]SP(C). The bidirectional search algorithm, on the other hand, succeeds because
when backward search stops at node B.r1, the algorithm knows from the forward search that
D is a member of B.r1. Therefore, the bidirectional algorithm can conclude that D must be
the member of A.r as well.

Second, and perhaps more importantly, suppose that the two credentials above were
stored at entity B (i.e. that (1) was stored by the subject and (2) was stored by the issuer).
In this case, following the same reasoning, it is easy to see that both forward and backward
search algorithms fail again, but, in addition, even the bidirectional search fails.

When both credentials are stored by their issuers (i.e. credential (1) is stored at A and
credential (2) is stored at B) the only way to discover that D ∈ [[A.r]]SP(C) is by using
backward search starting from A.r.

Finally, when both credentials are stored by their subjects (i.e. (1) is stored at B and (2)
is stored at D) only the forward search starting from D can find out that D ∈ [[A.r]]SP(C).

This example shows that when credential storage is distributed some chain discovery algo-
rithms may or may not work. In particular, if credential storage is not regulated, one may be
unable to find the answers to a query.

RT0 deals with this problem by introducing a storage type system limiting the number of
possible storage location by introducing the notion of well-typed credentials. Each role name
r has two types: an issuer-side type and a subject-side type. On the issuer side, each role name
can have one of three type values: issuer-traces-none, issuer-traces-def, and issuer-traces-
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all. On the subject side, each role can have one of two type values: subject-traces-none and
subject-traces-all. The intuition behind these type values is the following: if a role name
r has the (issuer-side) type issuer-traces-all then one should be able to answer the queries
of Sort 2 and to find all members of any role of the form A.r using solely the backward
search algorithm. Similarly, if a role name r has (subject-side) type subject-traces-all then
starting from any entity D one should be able to find all roles of the form A.r such that D is
a member of A.r (which corresponds to the queries of Sort 3). The type value issuer-traces-
def is a weaker version of the issuer-traces-all type value. If a role name r has (issuer-side)
type issuer-traces-def, then from any entity A one can find all credentials defining A.r. If
a role name r has type value issuer-traces-none then for any role A.r, the backward search
algorithm will not find any member of this role. If a role name r has type value subject-
traces-none, then starting from any entity D, the forward search algorithm will not be able to
find any role A.r such that D is a member of A.r.

Summarising, we have the following definition:

Definition 2.4.1 (Type) A type is a mapping from role names into two-element sets of the
form {i, s}, such that:

• i ∈ {issuer-traces-all, issuer-traces-def, issuer-traces-none}, and

• s ∈ {subject-traces-all, subject-traces-none}.

We call i the issuer-side type value and s the subject-side type value of r, denoted
itype(r) and stype(r) respectively, and we let type(r) = itype(r) ∪ stype(r).

The type of a role name directly indicates the storage location of the credentials.

Definition 2.4.2 (Storage) Let r be a role name and A.r ←− e be a credential.

• If itype(r) ∈ {issuer-traces-all, issuer-traces-def} then A must store this credential.

• If stype(r) = subject-traces-all then every entity B ∈ base(e) must store credential
A.r ←− e.

Notice that a credential might have to be stored both by the issuer and by the subject
(this is the case e.g. when one wants to be able to answer the queries of both Sort 2 and
Sort 3). The type value issuer-traces-none (resp. subject-traces-none) indicates that A (resp.
any entity B ∈ base(e)) does not store credential A.r ←− e. Notice that if a role name r
is issuer-traces-none and subject-traces-none at the same time, nobody would have to store
the credential A.r ←− e (this is an ill-typed combination and will be ruled out in the next
definition).

Let us go back to the two clauses in Example 2.9. We saw that if credential (1) was stored
only by its subject and credential (2) was stored only by its issuer then any of the presented al-
gorithms would be able to give a correct answer to the query “isD a member of [[A.r]]SP(C)?”.
In the light of Definition 2.4.2 this means that we have to avoid credentials of the form
A.r ←− B.r1, where itype(r) = issuer-traces-none and stype(r) = subject-traces-none.
In order to know which combinations are “good”, we have the notion of well-typed creden-
tials:
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Table 2.1: Well Typed RT0 credentials

(a)

A.r ←− B.r1
r1 ITA ITD STA

ITA OK
r ITD OK OK OK

STA OK

(b)

A.r ←− A.r1.r2
r1 ITA ITD STA
r2 ITA ITD STA ITA ITD STA ITA ITD STA

ITA OK
r ITD OK OK OK OK OK

STA OK

(c)

A.r ←− B1.r1 ∩B2.r2
r1 ITA ITD STA
r2 ITA ITD STA ITA ITD STA ITA ITD STA

ITA OK OK OK OK OK
r ITD OK OK OK OK OK OK OK OK OK

STA OK OK OK OK OK

Definition 2.4.3 (Well-typed Credentials) An RT0 credential c is well-typed if no role name
occurring in c has type {issuer-traces-none, subject-traces-none} and:

• if c = A.r ←− B.r1 then ∀t ∈ type(r),∃ t1 ∈ type(r1) s.t. the corresponding entry
in Table 2.1(a) is OK;

• if c = A.r ←− A.r1.r2 then ∀t ∈ type(r),∃ t1 ∈ type(r1) and ∃ t2 ∈ type(r2) s.t.
the corresponding entry in Table 2.1(b) is OK;

• if c = A.r←− B1.r1∩B2.r2 then ∀t ∈ type(r),∃ t1 ∈ type(r1) and ∃ t2 ∈ type(r2)
s.t. the corresponding entry in Table 2.1(c) is OK.

For example, take the credential c : A.r ←− A.r1.r2 and assume that type(r) =
type(r1) = {issuer-traces-def, subject-traces-all} and that type(r2) =
{issuer-traces-none, subject-traces-all}. Then, we see that for both type values of r, issuer-
traces-def and subject-traces-all, one can find a combination of type values for r1 and r2
such that this combination appears as a valid type assignment in Table 2.1(b). For the
issuer-side type value of r, issuer-traces-def, we have itype(r1) = issuer-traces-def and
stype(r2) = subject-traces-all; for the subject-side type value of r, subject-traces-all, we
have stype(r1) = stype(r2) = subject-traces-all. On the other hand, if we have that
type(r) = type(r1) = type(r2) = {issuer-traces-def, subject-traces-none}, then c would
not be well typed as there is no valid entry for this type value assignment in Table 2.1(b).
Note that simple member credentials (of the form A.r ←− D) are always well-typed.
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The following theorem summaries the results given in [67] and shows that using well-
typed credentials guarantees that the algorithms presented in Sect. 2.3 give correct answers
to queries even in presence of distributed credentials.

Theorem 2.4.4 Let C be a set of well typed RT0 credentials, and r be a role name.

• If itype(r) = issuer-traces-all then for each entity A, the backward search algorithm
correctly computes [[A.r]]SP(C).

• If stype(r) = subject-traces-all then for each entity D the forward search algorithm
finds all the roles A.r such that D ∈ [[A.r]]SP(C).

• For any given entity D, the bidirectional search algorithm can always correctly deter-
mine if D ∈ [[A.r]]SP(C).

Example 2.10 Consider again the policy of Example 2.9, if type(r) = {issuer-traces-all,
subject-traces-none} then, according to Table 2.1, for the credential (1) to be well-typed,
the type of role name r1 must also be {issuer-traces-all, subject-traces-none}. By Theorem
2.4.4, one can use the backward search algorithm to compute [[A.r]]SP(C). On the other
hand, if type(r) = {issuer-traces-none, subject-traces-all} then, for the credential (1) to
be well-typed, the type of r1 must also be {issuer-traces-none, subject-traces-all}. For this
type assignment, Theorem 2.4.4 says that, starting from D, the forward search algorithm
will discover that D is a member of B.r1 and A.r. Finally, if type(r) = {issuer-traces-def,
subject-traces-none} and type(r1) = {issuer-traces-none, subject-traces-all} then one can
check that D ∈ [[A.r]]SP(C) using the bidirectional search algorithm.

2.5 Other members of the RT family

As we have already mentioned, RT0 is only one of the members of the RT family of TM
languages. In this section we intend to give a flavour of these extensions and of the reasons
why they have been introduced. We do so by presenting examples. For a full explanation of
the syntax and semantics of the RT family, we refer the reader to Li et al. [66] and Li and
Mitchell [65].

2.5.1 RT1

RT1 extends RT0 with parameterised roles. In RT1 a role name consists of an RT0 role name
and zero or more parameters surrounded by parenthesis. A parameter can be a constant or a
variable of one of five types: integer, closed enumeration, open enumeration, float, and date
and time (see Li et al. [66] for details).

Example 2.11 In CITA a project document can always be read and written by its author, no
matter which policy applies to it. The remaining project members can read the document
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only if approved by the document author (identifiers starting with “?” are variables).

CITA.accessDoc(rw,?proj,?doc) ←− CITA.owner(?doc) ∩ CITA.member(?proj)

CITA.accessDoc(?access,?proj,?doc) ←−
CITA.approved(?access,?doc) ∩ CITA.member(?proj)

CITA.approved(?access,?doc) ←− CITA.owner(?doc).approved(?access,?doc)

For each data type one can create a so called static data set, which can be used to constrain
variables in credentials. Static in this context means that the values in the value set cannot
depend on credentials but must be known at the time the value set is being specified.

Example 2.12 Charles restricts the access to his picture gallery to his friends that are over
18.

Charles.accessPictures ←− Charles.friend(?Age:[18..100])

In the example above, the possible values of the variable ?Age are restricted to be in the range
between 18 and 100.

For the linking inclusion credentials, a parameter can also be a special keyword this,
which refers to a potential member of a linked role.

Example 2.13 CITA gives an annual salary increase to an employee if the employee’s man-
ager says that the performance of the employee is good:

(1) CITA.salaryIncrease ←− CITA.managerOf(this).goodPerformance
(2) CITA.managerOf(Marcin) ←− Sandro
(3) Sandro.goodPerformance ←− Marcin

When evaluating credential (1) above, parameter this takes the value Marcin. Marcin is
therefore a member of CITA.salaryIncrease.

2.5.2 RT2

RT2 extends RT1 with logical objects that can be used to dynamically restrict possible values
of the variables occurring in credentials. A logical object, or o-set, is similar to an RT1

credential, but its member set is not restricted to that of entities. For instance, a company can
define an o-set containing a selection of company documents, running projects, and also any
other valid RT1 entity.

Example 2.14 The policy of CITA states that any document of a project in CUS is also a
document of this project in CITA.

CITA.document(?proj) ←− CUS.document(?proj)

Now, CITA allows members of a project team to read documents of this project:

CITA.accessDoc(read,?D:CITA.documents(?proj)) ←− CITA.member(?proj)
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In the example above, ?D:CITA.documents(?proj) shows the application of a dynamic value
set. A dynamic value set is a generalisation of the static value set of which example was
given in Example 2.12. Similarly to the static value set, the dynamic value set can be used
to constrain variables occurring in credentials. However, when the values in a static value
set are fixed, the set of values a dynamic value set contains is given by the members of an
o-set used as a constraint. In the example above, the set of values the variable ?D can take is
restricted to the members of the o-set CITA.documents(?proj).

2.5.3 RTT

RTT has been introduced to support threshold and separation of duty policies. For instance, a
statement “A says that an entity E is a member of A.r if a member C of B.r1 and a member
D of B.r2 says so” is an example of a threshold policy. Here C and D can be one and the
same entity. In a separation of duty policy, we have a stronger condition: “A says that an
entity E is a member of A.r if a member C of B.r1 and a member D of B.r2 such that C
and D are two different entities both say so”. RTT is able to express this two types of policy.

Consider the following policy presented by Li et al. [66] being a combination of a thresh-
old and a separation of duty policy: “A says that an entity is a member of A.r if one member
ofA.r1 and two different members ofA.r2 all say so”. This policy cannot be expressed in the
RT dialects presented so far, and to express this in RT one needs to use the so-called manifold
roles. Manifold roles extend the notion of roles by allowing role members to be collections of
entities (rather than just principals). This is done in RTT by defining the operators � and ⊗.
A credential of the form A.r←− B1.r1�B2.r2 says that {s1∪ s2} is a member of A.r if s1
is a member of B1.r1 and s2 is a member of B2.r2. Notice that both s1 and s2 are (possibly
singleton) non-empty sets of entities (if the set contains only one element the surrounding
curly brackets can be omitted). A credential A.r ←− B1.r1 ⊗B2.r2 has a similar meaning,
but it additionally requires that s1 ∩ s2 = ∅. With these two additional sorts of credentials
one can express the above statement as follows:

A.r ←− A.r4.r

A.r4 ←− A.r1 �A.r3
A.r3 ←− A.r2 ⊗A.r2

Example 2.15 In CITA, a program must be verified by two different testers: one from CITA
and one form CUS.

CITA.verified ←− CITA.testTeam.approved

CITA.testTeam ←− CITA.tester⊗ CUS.tester

2.5.4 RTD

The RT framework also supports the so called delegation of role activations, which are useful
when one needs to delegate authority temporarily to a process or an agent. RTD provides a
delegation credential for this reason. Here we only present the basic intuition of how it
works. The simplest form of delegation credential is D

D asA.r- B0, which means that D
delegates to B0 the right of acting in D’s behalf “as member of A.r”. We call “D as A.r”
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a role activation. In the delegation credential above, B0 can also represent a request, rather
than an entity. Consider for instance the following example:

Example 2.16 Frank is the general practitioner (GP) of Henk in the hospital of Enschede
(Ziekenhuis Enschede – ZE). A general practitioner in ZE can access all medical records of
his patients.

ZE.gp(Henk) ←− Frank

ZE.accessMedRec(?Patient) ←− ZE.gp(?Patient)

During his holiday in Poland, Henk had a serious accident and required immediate surgery in
one of the hospitals in Warsaw (WH). Weronika, the operating doctor, needs to access Henk’s
medical records at ZE.

ZE and WH are members of the European Hospital Alliance (EHA). In case of necessity,
a doctor from one of the associated hospitals can access the medical records of a patient of
another hospital by activating her emergency role (this role is not active by default, and every
activation is carefully logged in both the hospital and EHA logs).

EHA.member ←− ZE

EHA.member ←− WH

ZE.accessMedRec(?Patient) ←− ZE.emergencyGroup.emergency(?Patient)

ZE.emergencyGroup ←− EHA.member

WH.canActivateEmergency ←− WH.doctor

WH.doctor ←− Weronika

Weronika can activate her role WH.emergency(Henk) and request Henk’s medical records
from ZE using the following delegation credential:

Weronika
Weronika as WH.emergency(Henk)- accessMedRec(ZE,Henk)

Here notice that accessMedRec(ZE,Henk) is not an entity but represent an explicit re-
quest, which is then handled by a dummy entity in RT (in other words, a dummy process is
started which issues an appropriate query to ZE).

2.5.5 RT	
The members of the RT family presented so far are monotonic: adding a credential to the
system can only result in granting additional privileges. However, banishing negation from
a TM language is not a realistic option. In fact, as stated by Li et al. [63]: “many security
policies are non-monotonic, or more easily specified as non-monotonic ones”. In Chapter
3 we argue that many access control decisions in complex distributed systems, like Virtual
Communities (VC), are hard to model in a purely monotonic language. We propose RT	,
which adds to RT a restricted form of negation called negation in context.

RT	 introduces a new operator	 and the so called exclusion credential A.r←− B1.r1	
B2.r2 indicating that all members of B.r1 which are not members of B2.r2 are members of
A.r.
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Example 2.17 Consider the policy of Example 2.5. In this policy, Charles.friend is defined
to be a transitive closure of the set of his direct friends. Now, if for some reason Charles
would like to exclude some entities from this set, he needs to use the following exclusion
credential:

Charles.accessPictures ←− Charles.friend	 Charles.blackList

Now, an entity is a member of Charles’s accessPicture role if she is a member of Charles’s
role friend and she is not on the Charles’s black list. Assume that we have:

Charles.blackList ←− Sandro

Then the semantics of the role Charles.accessPictures is:

[[Charles.accessPictures]]SP(C) = {Alice, Bob, Jeffrey, Johan}.

2.5.6 Summary

The table below summaries the key features of all the members of the RT framework.

The RT family member Key extensions
RT1 parameterised roles
RT2 logical objects

RTT manifold roles and role-product operators, which can
express threshold and separation of duty policies

RTD delegation of role activation, which allows for
selective use of credentials

RT	 restricted form of negation

RTD and RTT can be used, together or separately, in combination with either RT0, RT1, or
RT2. The resulting combinations are written RTD

i , RTT
i , and RTDT

i for i = 0, 1, 2. Currently,
RT	 cannot be use in connection with any other member from the table above. Notice also,
that only RT0 has a storage type system.

2.6 Related Work

In this section we briefly present other important trust management systems which influenced
the design of RT framework but also present diversity of possible approaches to trust man-
agement. We also show the related work on the reputation based trust management and we
show the most important differences between reputation systems and trust management.

2.6.1 Trust Management Systems

In this Section we briefly present the most important and influential trust management sys-
tems. We start with the pioneers of trust management: PolicyMaker [27] and KeyNote [25].
Then we show Simple Public Key Infrastructure/Simple Distributed Security Infrastructure
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(SPKI/SDSI) [36], which is the inspiration for RT in using local name spaces. Finally, we
show how the fundamental ideas of trust management are reflected in more practical systems:
we refer to Cassandra [19, 20], Trust Policy Language (TPL) [54], Proof Carrying Autho-
risation (PCA) [8, 17, 18], and Query Certificate Manager (QCM) [53]. We also point the
most important differences between the presented system and the RT framework.

PolicyMaker and KeyNote

The notion of Trust Management was introduced by Blaze et al. [27], as a problem in network
security for which the authors proposed an approach based on a small collection of general
principals: unified mechanism, flexibility (expressiveness), locality of control (autonomy of
system participants), and separation of policy from mechanism. PolicyMaker, also designed
and developed by Blaze et al. [26, 27], was the first trust management prototype system that
“facilitates the development of security features in a wide range of network services." [27]

Unlike RT , PolicyMaker places very few restrictions on the specification of authorisa-
tions and delegations. Policies and credentials are fully programmable, and can be arbitrary
executable programs, limited only by being strongly “sandboxed.” The advantage is that the
PolicyMaker approach enables application developers tremendous flexibility to define au-
thorisations and delegations. However, its compliance checking (evaluation) is in general
undecidable: no algorithm can, for each possible request, decide whether the request is au-
thorised. There are several variants of PolicyMaker’s proof of compliance problem that are
proven to be decidable, but NP-hard: globally bounded proof of compliance (GBPOC), lo-
cally bounded proof of compliance (LBPOC), and monotonic proof of compliance(MPOC).
A polynomial time bound can be achieved for compliance checking by combining the re-
strictions used in LBPOC with the requirement that assertions be monotonic. However, the
constant parameters that limit computational effort expended by a legal proof of compliance
are imposed arbitrarily without justification.

KeyNote [25] is a direct descendant of PolicyMaker. KeyNote assertions are written
in a concise and human readable assertion language. Evaluation is based on expression
evaluation, rather than on the execution of arbitrary programs, and is specified by an in-
formal, implementation-independent semantics that defines authorisation decisions based on
requested actions. Action requests are represented by a collection of variable bindings, and
credentials can contain constraints on these variables that can be used to restrict the actions
for which credential owners are authorised.

Credentials, in both PolicyMaker and KeyNote, bind public keys (of the credential sub-
jects) to direct authorisations of security-critical actions. Therefore, similarly to capability-
based system, KeyNote’s authorisation decision procedure is simplified and does not require
resolving the name or identity of the requester. However, capability-based systems are not as
scalable as attribute-based systems. In capability-based systems, managing the delegation of
access rights, for instance, to all students at a given university requires issuing a credential
to each student for each resource to which they have access (library, cafeteria, gym, etc.). In
attribute-based systems, such as RT , by utilising credentials that characterise their owners
as being students, the same student ID credential can be used to authorise a wide range of
actions.
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SPKI/SDSI

SPKI/SDSI [36] merged the SDSI [87] and the SPKI [44] efforts together to achieve an
expressive and powerful trust management system. SDSI (pronounced “sudsy"), short for “a
Simple Distributed Security Infrastructure," was proposed as a new public-key infrastructure
by Lampson and Rivest. Concurrently, Ellison et al. developed SPKI (pronounced “spooky"),
which was an abbreviation for “Simple Public Key Infrastructure."

SDSI’s main contribution is its design of linked local names, which solves the problem
of determining globally unique names. In SDSI, the owner of each public key can define
names local to a name space that is identified by that key. For example, “KAlice friends"
represents a SDSI name, where KAlice is a key identifying its name space and “friends" is
a name defined locally in that name space by KAlice. SDSI names that start with different
keys are different names, so there is only a low probability that local names in different name
spaces will interfere with one another. In this way, global uniqueness of names is achieved
without synchronising and coordinating naming authorities. The way in which RT ’s roles
are defined locally, but can be referenced non-locally, is inherited from SDSI’s design of
local name spaces.

While SDSI is responsible for binding names to public keys, SPKI is responsible for
making authorisations. SPKI’s authorisation scheme can be regarded as being orthogonal to
SDSI’s naming scheme. Originally in SPKI, the certificate subject is represented by its public
key. However, in SPKI/SDSI, the subject can be represented by its SDSI name. SDSI names
provide a method to define groups of authorised principals, which simplifies the delegation
procedure.

For example, if Bob wants to grant an authorisation to Alice’s friends, Bob can simply
use SDSI’s group name “KAlice friends". By contrast, using KeyNote, Bob would have to
enumerate the public keys of every friend of Alice’s in the “Licensee" field of the assertion.
The flexibility obtained by using SDSI names is useful in a decentralised system. On one
hand, Bob does not need to have a list of Alice’s friends when he is writing the authorisation
policies. On the other hand, any changes on Alice’s friends list will be immediately reflected
in the semantics of Bob’s authorisation policies.

SPKI/SDSI’s evaluator uses a bottom-up algorithm to compute a closure set containing all
certificates that can be derived from the given set of certificates. A request can be authorised
if it can be found in the closure set. This algorithm is proven to be polynomial [36]. However,
the evaluation process must be repeated whenever any certificate has been added or revoked,
or has expired, so it is not suitable for use with a large and frequently changing credential
pool.

Cassandra

Cassandra [19, 20] is a role-based trust management system, which was designed with the
goal of supporting the access control policies for a national electronic health record (EHR)
system.

Cassandra represents policy statements by Datalog clauses with constraints. Six special
predicates are predefined in Cassandra. Firstly, canActivate(e, r) expresses that entity e can
activate role r and, as such, that e is a member of r. Secondly, hasActivated(e, r) indicates
that entity e has activated role r. The distinction between the predicates canActivate and
hasActivated corresponds to the distinction between the role membership and the session
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Fig. 2.4: TPL system

activation in traditional RBAC [7]. Thirdly, canDeactivate(e1, e2, r) holds if entity e1 has
the power to deactivate e2’s activation of role r. Fourthly, isDeactivated(e, r) becomes true if
entity e’s role r is deactivated. Therefore, unlike RT that can only support role membership
and to some extent role activation (RTD), Cassandra can also role deactivation. If a role is
activated by a principal, a new fact (i.e., an atomic formula) representing this activation, and
using predicate hasActivated, is put into the policy; similarly, deactivation of roles causes
facts with predicate hasActivated to be removed from the policy. Fifthly, permits(e, a) says
that the entity e is permitted to perform action a. This differs from the standard notion of
role-permission assignment in two ways. On one hand, the parameter e allows constraints to
refer directly to the subject of the activation. On the other hand, permits has no parameter for
a role associated with the action, thus allowing more flexible permission specifications, e.g.,
a permission that is conditioned on the activation or (or perhaps merely membership in) more
than one single role. Finally, canReqCred(e1, e2.p(−→e )) says that the entity e1 is allowed to
request credentials issued by the entity e2 and asserting the predicate p(−→e ). Besides these six
special predicates, application developers can also define their own customised predicates.

TPL

TPL (Trust Policy Language) [54], designed at IBM Haifa Research Lab, was proposed
specifically for trust establishment between e-strangers. TPL is based on RBAC [7] and
extends RBAC by being able to map strangers to roles. Unlike RT and Cassandra, TPL’s
efforts are claimed to be put only into mapping users to roles, but not into mapping roles to
privileges, which simplifies the design. Figure 2.4 shows the access control model proposed
by Herzberg et al. [54].

In Fig. 2.4 the Certification Authentication module outputs the entire certificate of the
requester, which becomes an input to the Trust Establishment (TE) system. TE maps the
subject of the certificate to a role, based on the provided certificate, other certificates collected
by TE and on the given role assignment policy.

TPL uses XML for application developers to write security rules, which will be trans-
lated in TPL to a standard logic programming language, e.g. Prolog. Unlike RT , which
is monotonic, TPL is non-monotonic, since it includes negative rules. A negative rule
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indicates that learning a new piece of knowledge (e.g., a credential) will reduce the re-
quester’s privileges. For example, a negative rule represented in Prolog statement can be
“group(X,Discount) :− \+ group(X,Felon)," in which “\+" represents the negation as
failure. It means that if the derivation of the credential of being a felon fails, then the re-
quester is allowed to have the discount. However, the authors do not prove the soundness
and completeness of TPL, which means that given a set of certificate one cannot guarantee
that a sound decision will be made or that not every statement which is known to be true
given a set of credentials will be derived by the system. The example below [54] shows the
XML encoding and the corresponding Prolog translation of a TPL policy statement saying
that “a hospital X can become a member of group hospitals if X can provide at least two
recommendation certificates whose issuers are already known to be in the hospitals group
and their recommendation level is higher than 1”:

XML:
<GROUP NAME="hospitals">

<RULE>
<INCLUSION ID="reco" TYPE="Recommendation" FROM="hospitals"

REPEAT="2"/>
<FUNCTION>

<GT>
<FIELD ID="reco" NAME="Level"/>
<CONST>1</CONST>

</GT>
</FUNCTION>

</RULE>
</GROUP>

Prolog:
group(X, hospitals) :−

cert(Y1, X, "Recommendation",RecFields1),
cert(Y2, X, "Recommendation",RecFields2),
Y1! = Y2,
group(Y1, hospitals),
group(Y2, hospitals),
field(RexFields1, "Level",L1),L1 > 1,
field(RexFields2, "Level",L2),L2 > 1.

PCA

PCA (Proof Carrying Authorization) [8, 17, 18] has been mainly designed for the access
control on server’s web page resources. Figure 2.5 shows the components of PCA system
working in a web browsing environment. HTTP proxy is used to make the whole process of
accessing a web page transparent to the web browser. The web browser only knows the final
result: either the requested web page or a denial message is displayed. The proxy is designed
to be portable and easily integrated into the client system without changing anything inside
the original web browser. Therefore, it saves the client from collecting relevant credentials
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Fig. 2.5: PCA system

and negotiating with the resource owner.
PCA uses higher-order logic to specify policies and credentials, so that it can be very

expressive. However, its evaluation is thus undecidable. In their design, undecidability is
resolved in two phases. Firstly, in order to reduce the computation burden on the server’s
PCA evaluator, it is required that the requesting client constructs the authorisation proof.
The server’s evaluator only needs to check the proof, which is not only decidable, but can
be done efficiently. Secondly, on the client side, the proxy is responsible for navigating and
retrieving credentials, computing proofs and communicating with the server. In order to
avoid undecidable computation at the client side, the client proxy does not use the full logic,
but use an application-specific limited logic, which should be tractable.

QCM

QCM [53], short for “Query Certificate Manager", was designed at the University of Pennsyl-
vania as a part of the SwitchWare project on active networks to support secure maintenance
of distributed data sets. For example, QCM can be used to support decentralised adminis-
tration of distributed repositories housing public key certificates that map names to public
keys. For the purposes of access control, QCM provides security support for ACL’s query
and retrieval.

A QCM policy is specified in relational calculus. One of the main contributions of QCM
is its design of a policy directed certificate retrieval mechanism [53], which enables the TM
evaluator automatically to detect and identify missing but needed certificates, and to retrieve
them from remote certificate repositories. It uses query decomposition and optimisation
techniques, and its novel solutions are discussed in terms of network security, such as private
key protection methods. However, unlike RT credentials, which can be stored with their
either their subjects or their issuers, and can then be located and retrieved as needed during
authorization evaluation, credentials in QCM must be stored with their issuers. Figure 2.6
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Fig. 2.6: QCM Engine

[53] shows the stages by which queries and credentials are processed in the evaluator and
how the evaluation process interleaves and cooperates with the credential retrieval process.

2.6.2 Trust Management and Reputation Systems

Since the term Trust Management was first introduced by Blaze et al. [27], TM became an
important and popular research area. However, in many cases the work having TM in the
title has often very little in common with TM as understood by its originators. Most of these
cases come from the field of Reputation Systems [59, 86, 92, 103, 104] – also referred in
the literature as Reputation Based Trust Management. Although in this chapter we do not
deal with reputation systems, because reputation systems are undoubtedly related to TM, we
provide some background information and we mark the most evident differences with TM.

Reputation systems is now a well researched area [105]. The interest in reputation sys-
tems comes from e.g. expert and auction systems [86], like AllExperts
(http://www.allexperts.com), where everyone can ask an expert volunteer a question from
the selected area. The user can then rate the expert so that other users be informed on
the quality of advice given by different experts. An example of an auction system is eBay
(http://www.ebay.com). In eBay, every user is welcome to leave a positive, negative or neu-
tral feedback after each transaction. Sellers and buyers in eBay can rate each others and by
this they can discourage (or encourage) prospective users to enter into business with another
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eBay user.
It has been observed that reputation is an important factor which naturally supports the

process of building trust among people [56, 86]. The role of a reputation system is then to
collect, distribute, and aggregate feedbacks (reputations) concerning participants’ past be-
haviour [86]. The past behaviour is usually expressed using a so called trust metric, which
describes the agent’s trust in another agent - most often within some well defined context
[6]. In defining trust and reputation, authors often refer to social sciences [6, 72] or econ-
omy and politics [37, 86]. In most of the formal approaches to reputation based trust man-
agement there is a clear distinction between a so called direct and recommendation trust
[6, 58, 104, 105].

It is clear that the areas that both Trust Management and Reputation Systems cover over-
lap. There are, however, important differences. Most reputation systems are numeric [30],
and do not incorporate language facilities. Reputation systems are also in general highly
dynamic and deal mostly with the trust metric definition or recommendation exchange proto-
cols. Reputation systems answer the question how to build trust values from the local history
and the information provided by other peers. Most importantly, the trust gained in reputation
systems is rather fuzzy in nature as it depends on an often obscure algorithm and on some-
times highly subjective feedback. In Trust Management, on the other hand, trust is obtained
as a result of a formal evaluation of a set of credentials with respect to the user policy. Each
user is also allowed to have different policy, which is usually not allowed in the existing
reputation systems.

2.7 Conclusions
In this chapter we present the RT trust management framework. We show the syntax, the
semantics and the storage type system for the core language of the RT family. We give a
detailed description of the credential chain discovery algorithms supported with illustrative
examples. We also present various examples demonstrating the expressive power of other
members of the RT family, including the non-monotonic extension RT	 which we fully de-
scribe in Chapter 3. The contribution of this chapter, is a clearer presentation of the semantics
and the type system of RT0 than Li et al. [67], and also improved pseudo-code for the orig-
inal credential chain discovery algorithms. Additionally, we believe that extensive Related
Work and comparison between credential based and reputation based trust management will
help the reader to understand the contents of the following chapters better.





CHAPTER 3

Nonmonotonic Trust
Management for P2P
Applications

In the previous chapter we presented the RT Trust Management framework showing how
RT can be used to model various distributed access control scenarios. In the context of the I-
Share project we needed to model virtual communities and yet we were unable to model even
relatively simple scenarios involving community decisions about access control in virtual
communities. The reason for this is that many access control policies in virtual communities
are non-monotonic in nature. This means that they cannot be expressed in current, monotonic
trust management languages of which is RT is a prominent representative.

In this chapter we propose a non-monotonic extension to RT. The new member, RT	,
adds a restricted form of negation to RT, thus admitting a controlled form of non-monotonicity.
In the chapter we present the declarative semantics for RT	, we extend the credential chain
discovery algorithm, and provide an implementation. Finally we discuss the performance of
the new algorithm when executed on the most popular Prolog engines.

The contents of this chapter was first published as M. Czenko, H. Tran, J. Doumen,
S. Etalle, P. Hartel, and J. den Hartog. Nonmonotonic Trust Management for P2P Applica-
tions. In Proc. 1st International Workshop on Security and Trust Management, Electronic
Notes in Theoretical Computer Science (ENTCS), pages 101–116. Elsevier, 2005.
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3.1 Introduction
Languages from the family of Role Based Trust Management Framework (RT), like most
Trust Management (TM) languages are monotonic: adding a credential to the system can
only result in the granting of additional privileges. Usually, this property is desirable in
policy languages [89]. However, banishing negation from an access control language is not a
realistic option. In fact, as stated by Li et al. [63] “many security policies are non-monotonic,
or more easily specified as non-monotonic ones”; similar views are expressed by Barker and
Stuckey [16] and by Wang et al. [99] in the context of logic-based access control. This is
also true for complex distributed systems such as virtual communities. In particular, as we
will show, modelling access control decisions by a community, as opposed to access control
decisions by an individual member, cannot be made without at least a form of negation,
which we call negation-in-context. As pointed out by Dung and Thang [42] a TM system
should be monotonic with respect to the credential submitted by the client but could be non-
monotonic with respect to the site’s local information about the client. Our extension allows
a TM system to be non-monotonic not only in a local setting, but also when the context for
negation can be provided.

Contributions We present an enhancement to the expressive power of the RT family of
trust management languages by proposing RT	, an extension of RT0. More specifically we:

• add a single new statement type adding negation-in-context to standard RT;

• present and discuss the declarative semantics of RT	;

• show that the extension is essential to specify access control policies for virtual com-
munities.

• describe a chain discovery algorithm for RT	.

In the next section we discuss how access control policies in virtual communities motivate
us to add negation-in-context to RT. In Section 3.3 the syntax and informal semantics of RT	
is introduced. The formal semantics of RT	 is presented in Section 3.4. We present related
work in Section 3.7 and conclusions and future work in Section 3.8.

3.2 Virtual Communities
Virtual communities are groups of individuals with a shared interest, relationship or fantasy
[62]. The majority of current virtual communities is interested in sharing audio/video content
using P2P systems [83]. Taking into account the distributed nature of virtual communities,
special mechanisms for access control must be provided to ensure secure operations at both
intra- and inter-community levels. As it is often impossible to identify strangers [80], trust
must be established between community members and entities from outside the community
prior to allowing a specific access. We adopt the solution of SPKI/SDSI [36], where crypto-
graphic key is used as the entity identifier. This requires that each entity is the sole holder of
a particular key and we rely on a Public Key Infrastructure (PKI) [33, 107] to establish the
keys.
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As an example imagine that Alice (A), Bob (B), and Carol (C) decide to form a virtual
community (or just a community for short). At the beginning they are the only members of
the community, but they welcome others to join. We represent a community by a list with an
entry for each member. Each entry names the community member and the members it knows
about. This knowledge results from previous interactions with the community members. In
this chapter, however, when we say that one knows another community member we mean
that one is capable of finding this member later if necessary. Thus, the “knows” relation is
not necessarily commutative, since one entity can decide to keep track of the other, but not
vice versa. For example the following list represents the community of Alice (A), Bob (B),
and Carol (C):

A[B,C] B[A,C] C[A,B]

In this community all members know each other, which means that each member can locate
any other member when needed. As the community grows it becomes harder and harder for
each member to have complete information about all other members. Yet the community
would like to protect its integrity. Rather than to require involvement of all members in deci-
sion making, a more practical and scalable approach is to allow decisions about membership
to be taken by a group of coordinators selected from the community members. This group
of coordinators itself forms a (sub)community. To find all the coordinators we require that
the directed graph formed by the "knows" relation is strongly connected. This means that
each coordinator has a relationship with at least one other coordinator in such a way that all
coordinators can be reached. For example in the list below A knows B, B knows C and C
knows B and A:

A[B] B[C] C[B,A]

To become a member of a community or to become a new coordinator all the existing coor-
dinators of a given community must approve. Trust management languages based on logic
programming semantics do not support queries of this kind directly. If one wants to know
“if all coordinators approve entity A” without explicitly enumerating these coordinators, one
must check if the negation of this statement - “is there any coordinator that does not approve
entity A” - holds. If not, one can conclude that all coordinators approve entity A. Existing
trust management languages [66] are strictly monotonic, thus do not allow for negation. For
this reason they are not sufficiently expressive to model complex collaborations that com-
monly appear in virtual communities.

3.3 RT	
In this section we introduce a new member of the RT family: RT	. We first describe a new
role-exclusion operator 	 and then we show how the new operator can be used to model the
scenario presented in Section 3.2. The RT framework is introduced in detail in Chapter 2.

3.3.1 Extending RT0 with negation

RT0 and other languages from the RT framework do not support negation. As argued in
Section 3.2, this limits expressiveness. Let us first see an example of negation to enforce the
following separation of duty policy: “developers cannot be testers of their own code”. We
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would like to express in RT something similar to the LP clause:

verifycode(?X) :- tester(?X),not developer(?X).

where ?X denotes a logical variable. This clause states that an entity A can verify the code if
A is a tester and A is not the developer responsible for the code. RTDT - another member
of the RT framework [66] - supports thresholds and delegation of role activations; to some
extent, RTDT allows to model separation of concerns without using negation. However, this
comes at the cost of having to define manifold roles (cumbersome to work with, in practice:
recall that besides entities, a manifold role can contain also collection of entities). In any
case, the examples we present in the sequel cannot be modelled in RTDT . Therefore, we
need a new variant of RT, which defines a new type of statement with role-exclusion operator
	:
• A.r ←− B1.r1 	 B2.r2 (Exclusion) All members of B1.r1 which are not members of
B2.r2 are added to A.r.

Example 3.1 Using the 	 operator we can solve the separation of concerns problem as
follows:

Company.verifycode←− Company.tester 	 Company.developer. (3.1)

Suppose that both Alice and Bob are testers but Alice is also a developer of the code:

Company.tester←− Alice Company.tester←− Bob

Company.developer←− Alice

We see that credential 3.1 does not make Alice a member of the Company.verifycode role.
Thus, only Bob can verify the code.

3.3.2 Modelling virtual communities using RT	

Having given a simple example and its representation in RT	, we now return to the more
complex scenario of community decision making from Section 3.2.
Recall that we have a community of coordinators - Alice (A), Bob (B), and Carol (C). As-
sume that another entity - say D - wants to join this community and asks Alice for approval.
Alice can accept D as a new coordinator locally, but before making the final decision she
must check if there is no objection from other coordinators. A coordinator expresses the ob-
jection using a so called black list. An entity that is on the black list of one of the coordinators
will not be accepted as a new coordinator.
Table 3.1 shows the minimal definition, and the descriptions of the roles used by coordina-
tors. We see from Table 3.1 that some roles are mandatory while the others are not. For
instance the role disagreeToAdd must be defined by each coordinator. On the other hand,
the roles allCoord, allCandidates, and addCoord can be defined as needed by a coordinator.
Special attention must be given to the definition of the disagreeToAdd role. For example, a
coordinator can use the following credential to say that she distrusts any entity she does not
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Table 3.1: Roles used by coordinators

Definition (for coordinator A) Description
Op-
tio-
nal

A.agreeToAdd←− [set of entities]

A coordinator uses this role to express that she ap-
proves an entity. The role has a local meaning. It
is not sufficient to be a member of the agreeToAdd
role to become a coordinator. It is necessary that
no other coordinators says that an entity is a mem-
ber of her disagreeToAdd role. The agreeToAdd
role, through the allCandidates role, provides con-
text for the 	 operator in the definition of the the
addCoord role.

×

A.disagreeToAdd←−
[see description in the text] This role is used by a coordinator as a black list. ×

A.coord←− [set of entities]
This role contains all the coordinators known by a
coordinator.

×
A.allCoord←− A
A.allCoord←− A.allCoord.coord

This role allows a coordinator to iterate over all en-
tities connected by the coord role. This role, if de-
fined, contains all the coordinators.

3

A.objectionToAdd←−
A.allCoord.disagreeToAdd

A coordinator can use this role to obtain all entities
for which there is any objection.

3

A.allCandidates←−
A.allCoord.agreeToAdd

This role, if defined, contains all the candidate co-
ordinators locally accepted by any of the coordina-
tors. Used as the context for the 	 operator in the
body of the addCoord role.

3

A.addCoord←− A.allCandidates 	
A.objectionToAdd

After becoming a member of this role, a candi-
date coordinator becomes a new coordinator and
becomes a member of the coord role.

3

accept locally:

A.disagreeToAdd←− A.allCandidates 	 A.agreeToAdd.

If a coordinator trusts other coordinators to select candidates she can leave the agreeToAdd
role empty and use her disagreeToAdd role to block some candidates. For example, Alice can
put E on her black list to disallow E to become a coordinator, and simultaneously accept all
other candidates proposed by other coordinators:

A.disagreeToAdd←− E.

When a candidate coordinator becomes a member of the addCoord role of some coor-
dinator there must exist an additional mechanism that dynamically extends the membership
of role coord of the same coordinator. How this mechanism is realised is implementation
dependent and we discuss this further in Section 3.6.



54 Chapter 3. Nonmonotonic Trust Management for P2P Applications

Example 3.2 Table 3.2 shows the roles and their members as seen by Alice, Bob, and Carol.
In this table, we assume that Alice agrees locally to add D as a new coordinator. Also, Bob
and Carol have no objection to add D as a new coordinator, but E is on Alice’s black list
and F is on the black list of Bob and Carol. As a consequence, only D is the member of the
addCoord role of Alice. Bob and Carol do not have to define the allCoord, allCandidates,
objectionToAdd, and addCoord unless they themselves add a new coordinator. Notice that a
coordinator must define the allCandidates role if she defines the disagreeToAdd role in terms
of the agreeToAdd role.

Table 3.2: Adding a new coordinator - D is successful, E, F fail (“−” = not defined)
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Alice (A) {B} {D} {A,B,C} {D} {E} {E,F} {D}
Bob (B) {C} {} − − {F} − −

Carol (C) {B,A} {} − − {F} − −

3.4 Semantics

The semantics of trust management languages is typically given by a translation into a logic
programming (LP) language [66]. We will follow the same route. Trust management creden-
tials are by definition distributed among different principals. The use of negation creates an
additional difficulty, also because in logic programming various different semantics exist to
cope with negation. We have chosen to use the Well-Founded (WF) semantics [49] for the
reasons given below.

The first reason is syntactic: in a TM system it is impossible to avoid circular references,
and we cannot expect policies to be (locally) stratified. Stratification basically means that one
can restructure a logic program into separate parts in such a way that negative references from
one part refer only to previously defined parts. Without the possibility of local stratification
we cannot use the perfect model semantics [84]. For the same reason, we certainly have to
use a three valued semantics: next to the truth values true and false, we have to admit the
valued undefined. In short, this is because we cannot expect the completion of a policy to be
a consistent logic program in the sense described in [91].

A second point is handling of positive circular references, as in {A.r ←− B A.r ←−
B.r B.r ←− A.r}. In this case, in accordance with the semantics of RT0, we want to be
able to say that for some C, it does not belong to A.r. This forces us to exclude Kunen’s
semantics [61] (i.e. the semantics of logical consequences of the completion of the program
together with the weak domain closure assumptions), and Fitting’s semantics [48]: in both
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semantics the query “does C belong to A.r?” would return undefined. The WF semantics
does return false for this membership query.

Finally, the WF semantics imposes no restrictions on the syntax of programs, provides
an unique model for each program (as opposed to e.g. the stable model semantics [50]) and
enjoys an elegant fixed-point construction.

3.4.1 Well-founded Semantics
We now summarise the WF semantics [49] for general logic programs. A general logic
program is defined as follows:

Definition 3.4.1 A general logic program is a finite set of clauses of the form: A :- L1, . . . , Ln.

Here A is an atom (the head of the clause) and L1, . . . , Ln with n ≥ 0 are literals forming
the body. A literal is an atom A (positive literal) or a negated atom ¬A (negative literal). We
refer to general logic programs (GLP) simply as programs. A fact is a clause with an empty
body. The Herbrand universe of a program P , denoted by UP , is the set of all ground terms
(i.e. variable-free) constructed from constants and function symbols in P . The Herbrand
base of P , denoted by BP , is the set of ground atoms obtained from predicates in P and
terms in UP . An instantiated clause of P is a ground clause obtained by substituting terms
in UP for variables in the clause in P . The Herbrand instantiation Ground(P ) of P is the
set of all instantiated clauses. A set I of ground literals is consistent if there is no atom A
such that both A and ¬A are in I . An interpretation of P is a consistent set of ground literals
in BP . Intuitively, atom A is true in I if A ∈ I , false in I if ¬A ∈ I , and undefined in I if
neither A ∈ I nor ¬A ∈ I .

The well-founded semantics uses unfounded sets to derive atoms that are false:

Definition 3.4.2 Let P be a program, I be an interpretation of P , and U be a subset of BP .
U is an unfounded set of P with respect to I if every atom A ∈ U satisfies the following
condition: for every instantiated clause A :- L1, . . . , Ln ∈ Ground(P ) whose head is A,
either (1) some literal L is false in I or (2) some positive literal L is also in U .

Intuitively, an unfounded set is a set of atoms which can be simultaneously declared false
without having to assume anything to be true. The union of unfounded sets is an unfounded
set, and the greatest unfounded set of P with respect to I , denoted by UP (I), is the union of
all unfounded sets of P with respect to I .

Definition 3.4.3 Let P be a program, I be an interpretation of P . Transformations TP and
WP , and the well-founded semantics of P are defined as follows:
• A ∈ TP (I) if and only if there is A :- L1, . . . , Ln ∈ Ground(P ) such that all literals

L1, . . . , Ln are true in I;
•WP (I) is a union of TP (I) and ¬UP (I) which contains the negation of each element

in UP (I) : WP (I) = TP (I) ∪ ¬UP (I).
• The well-founded model of P is the least fixed point of WP (I).

Transformations TP (I), UP (I), and WP (I) are monotonic [49]. Let α range over all
countable ordinals, the set Iα, whose elements are literals in the Herbrand base of P , is
defined recursively by: Iα+1 = WP (Iα). Iα is also a monotonic sequence. I∞ = ∪αIα is the
least fixed point of WP .
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Example 3.3 Consider the program P with the following clauses:

p :- q. q :- p. r :- ¬q. s :- ¬t. t :- ¬s. u :- ¬s.

In the well-founded model of P we have that p and q are false, r is true, and, because s and
t are defined in terms of their own each other’s complement, s and t are undefined. Then u
is undefined because s is undefined. (On the other hand, all predicates would be undefined
in Kunen’s semantics.)

3.4.2 Translating RT	 to GLP
We first give the translation to LP for RT0 and, using this translation, the semantics of a set
of RT0 policy statements. Next we extend this to a translation from RT	 to GLP and the
semantics for a set of RT	 policy statements.
The semantics of a set of RT0 policy statements is commonly defined by translating it into a
logic program [66]. Here, we depart from the approach of Li et al. [66] by referring to the
role names as predicate symbols. This removes the need for “polymorphic” mode system
in Core TuLiP (Core TuLiP is introduced in Chapter 4) and also removes the temptation of
(accidently) using a variable symbol for the role name. For example, the statement A.r←−
D is translated to r(A,D) in the Prolog program. Intuitively, r(A,D) means that D is a
member of the role A.r.

Definition 3.4.4 Given a set P of RT0 policy statements, the semantic program,SP (P), for
P is the logic program defined as follows (recall that symbols starting with “?” represent
logical variables):

• For each A.r ←− D ∈ P add to SP (P) the clause r(A,D)

• For each A.r ←− B.r1 ∈ P add to SP (P) the clause r(A, ?Z) :- r1(B, ?Z)

• For each A.r ←− A.r1.r2 ∈ P add to SP (P) the clause r(A, ?Z) :- r1(A, ?Y ),
r2(?Y, ?Z)

• For eachA.r ←− B1.r1∩B2.r2 ∈ P add to SP (P) the clause r(A, ?Z) :- r1(B1, ?Z),
r2(B2, ?Z)

The semantics of a role A.r is a set of members Z that make the predicate r(A,Z) true in
the semantic program: [[A.r]]P = {Z |SP (P) |= r(A,Z)}.

We write SP (P ) |= r(A,Z) if r(A,Z) is true in the unique well-founded model of P .
(For negation-free programs this model coincides with the least Herbrand model used for the
semantics of RT0 by Li at al [66].) We now extend the translation of RT0 to that of RT	 by
adding the translation of the exclusion rule.

Definition 3.4.5 Given a set P of RT	 policy statements, the semantic program, SP (P), for
P is the general logic program defined as follows:

• For eachA.r ←− B.r1	B.r2 ∈ P add to SP (P) the clause r(A, ?Z) :- r1(B1, ?Z),
¬r2(B2, ?Z)
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• All other rules are as in definition 3.4.4.

The semantics of a role A.r is a set of members Z that make the predicate r(A,Z) true in
the semantic program: [[A.r]]P = {Z |SP (P) |= r(A,Z)}

Note that, unlike before, the value of the semantical program may give value ‘undefined’ for
r(A,Z). In this case the agent Z is not considered to be a member of the role, nor of the
negated role.

Example 3.4 Consider a system with entities A,B,C,D, roles A.r,B.r and C.r and the
following policy rules:

A.r ←− B.r 	 C.r C.r ←− B.r 	A.r B.r ←− D

Here D is a member of B.r, however, D is not a member of either A.r or C.r. Note that as
a result we have that despite the presence of the rule A.r ←− B.r 	 C.r the role B.r can
have members that are neither in A.r nor in C.r.

The rules for A.r and C.r in the example above are referred to as negative circular depen-
dencies; A.r depends negatively on C.r and C.r, in turn, depends negatively on A.r. The
example shows that care is required when reasoning about policies which have negative cir-
cular dependencies.

3.4.3 Virtual Communities - translation to GLP
Having introduced an example of virtual community decision making in Section 3.2, its
formalism in Subsection 3.3.2, we now give the GLP semantics of the example. Translating
RT	 credentials to GLP is straightforward using the rules presented in Subsection 3.4.2.

Table 3.3 presents a complete policy and the corresponding GLP rules. If one asks Alice
to addD to the group of coordinators she needs to check ifD is a member of the A.addCoord.
This is equivalent to checking whether addCoord(A,D) holds after the translation to GLP. She
does this by checking whether D is a logical consequence of the semantic program SP (P)
by first finding the semantics of the role A.addCoord and checking if it contains entity D.
The semantics of the role A.addCoord with respect to the program P is as follows:

JA.addCoordKP = {D}.

The semantics of the roles A.allCandidates and A.objectionToAdd (these roles define the role
A.addCoord) are shown below:

JA.allCandidatesKP = {D} JA.objectionToAddKP = {E,F}.

The semantics of a role may also be an empty set: JB.agreeToAddKP = {}.
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Table 3.3: Virtual Community - translation to GLP

RT	 rules GLP semantics

A.addCoord←− A.allCandidates 	
A.objectionToAdd

A.allCandidates←−
A.allCoord.agreeToAdd

A.objectionToAdd←−
A.allCoord.disagreeToAdd

A.disagreeToAdd←− A.allCandidates 	
A.agreeToAdd

A.allCoord←− A.allCoord.coord

A.allCoord←− A
A.coord←− B
B.coord←− C
C.coord←− B
C.coord←− A
A.agreeToAdd←− D
A.disagreeToAdd←− E
B.disagreeToAdd←− F
C.disagreeToAdd←− F

addCoord(A, ?Y ):- allCandidates(A, ?Y ),

¬objectionToAdd(A, ?Y ).

allCandidates(A, ?Y ):- allCoord(A, ?Z),

agreeToAdd(?Z, ?Y ).

objectionToAdd(A, ?Y ):- allCoord(A, ?Z),

disagreeToAdd(?Z, ?Y ).

disagreeToAdd(A, ?Y ):- allCandidates(A, ?Y ),

¬agreeToAdd(A, ?Y ).

allCoord(A, ?Y ):- allCoord(A, ?Z),

coord(?Z, ?Y ).

allCoord(A,A).

coord(A,B).

coord(B,C).

coord(C,B).

coord(C,A).

agreeToAdd(A,D).

disagreeToAdd(A,E).

disagreeToAdd(B,F ).

disagreeToAdd(C,F ).

3.5 Credential Chain Discovery

In this section we extend the standard chain discovery algorithm to RT	 following the con-
struction of the well-founded semantics. Recall that the definition of a role A.r is the set of
all credentials with head A.r. We assume that A stores (or at least, is able to find) the com-
plete definition of each of her roles A.r, i.e. that the credentials involved are issuer-traceable.
The main difficulty in the chain discovery is to obtain that B is not a member of a linked role
A.r.r′. For this we need to check that every potential member C of A.r does not have B in
its role C.r′. So who are the potential members of A.r? Thanks to negation in context we
can provide a reasonable overestimation of this set using chain discovery for RT0:

Definition 3.5.1 For a policy P the context policy P+ is the policy obtained by replacing
each credential of the form A.r ←− B1.r1 	 B2.r2 ∈ P by A.r ←− B1.r1 and leaving the
other credentials unchanged. We call [[A.r]]P+ the context of the role A.r.

In the algorithm below we build a set of credentials C together with a set of context member-
ship facts I+ and a set of positive and negative membership facts I.
Step 1. Initialise I = ∅, I+ = ∅ and C = the definition of role A.r.
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Step 2. Discover context and credentials (classical chain discovery for I+ and C).
We look for new credentials top down; any credential that could possibly be relevant for role
A.r is added to C. We look for the context ofA.r bottom up; any fact that can be derived from
the credentials that we have found is added to I+. Repeat the following until no changes
occur: For each credential of the following form in C:

[B.r0 ←− C] add r0(B,C) to I+
[B.r0 ←− C.r1] add the definition of C.r1 to C and add r0(B,D) to I+ for all r1(C,D)

in I+
[B.r0 ←− C1.r1 ∩ C2.r2] add the definitions of C1.r1 and C2.r2 to C add r0(B,D) to

I+ whenever r1(C1, D) and r2(C2, D) in I+.
[B.r0 ←− C.r1.r2] add the definition of C.r1 and, for each r1(C,D) ∈ I+, the def-

inition of D.r2 to C. Add r0(B,D) to I+ whenever for some Y we have r1(C, Y ) and
r2(Y,D) in I+.

[B.r0 ←− C1.r1 	 C2.r2] add the definitions of C1.r1 and C2.r2 to C, add r0(B,D) to
I+ for every r1(C1, D)
Step 3. Discover positive facts in I (extended chain discovery 1).
We update I similar to I+ in the previous step, only the last case (	) changes. Repeat until
I does not change, for credentials in C of the following form:

[B.r0 ←− C] add r0(B,C) to I
[B.r0 ←− C.r1] add r0(B,D) to I for all r1(C,D) in I
[B.r0 ←− C1.r1 ∩ C2.r2] add r0(B,D) to I whenever r1(C1, D) and r2(C2, D) in I.
[B.r0 ←− C.r1.r2] Add r0(B,D) to I whenever for some Y we have r1(C, Y ) and

r2(Y,D) in I.
[B.r0 ←− C1.r1 	 C2.r2] add r0(B,D) to I whenever r1(C1, D) ∈ I and either

(¬r2(C2, D)) ∈ I or r2(C2, D) 6∈ I+.
Step 4. Discover negative facts in I (extended chain discovery 2).
We search for facts which are useful when negated in I: Initialise U = ∅. We say an atom
r(X,Y ) is not yet false (NYF) if it is a member of the context and not assumed or known to
be false, i.e. r(X,Y ) ∈ I+, r(X,Y ) 6∈ U and ¬r(X,Y ) 6∈ I. A fact r2(C2, D) is useful if it
is not yet false and ¬r2(C2, D) can be used to derive a fact, i.e.B.r0 ←− C1.r1	C2.r2 ∈ C
and r1(C1, D) ∈ I. Choose one useful fact and add it to U .
Step 4a. Following the well-founded semantics, we now show that facts in U are false by
showing that no rule can possibly derive a fact in U . To achieve this we may need to assume
that other facts are also false, i.e. add them to U .
For each fact r(B,D) in U and matching rule B.r ←− e ∈ C perform:

[B.r ←− C] Do nothing.
[B.r ←− C.r1] This rule cannot be used to derive r(B,D) if r1(C,D) is false thus if

r1(C,D) is NYF then add it to U .
[B.r ←− C1.r1 ∩ C2.r2] If r1(C1, D) and r2(C2, D) are both NYF then choose one to

add to U .
[B.r ←− C1.r1 	 C2.r2] If r1(C1, D) is NYF and r2(C2, D) 6∈ I then add r1(C1, D)

to U .
[B.r ←− C.r1.r2] For all Y with r1(C, Y ) NYF: If r2(Y,D) is NYF choose one of

r1(C, Y ) and r2(Y,D) and add it to U .
Try each possible choice in the Step 4a above and if the resulting U has no elements in

common with I then add ¬U to I.
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Repeat steps 3 and 4 until I remains unchanged.
(End of algorithm.)

The algorithm correctly finds the members of the role A.r as stated by the next theorem.

Theorem 3.5.2 (Soundness and completeness) The output I of the algorithm satisfies:
∀B : r(A,B) ∈ I ⇐⇒ B ∈ [[A.r]]P .

where P is the policy containing all credentials and A.r is the role being discovered.

Proof. [Sketch] The algorithm follows exactly the construction of the well-founded semantics
except that only part of the interpretation is found. Thus clearly I will be a subset of the
well-founded model for SP (P) (giving soundness). However, as the part of the interpretion
used basically covers the contexts of A.r and all roles used to define A.r it also covers any
membership facts for A.r (giving completeness).

3.6 Implementation
In the current prototype storage is centralised and we assume that all credentials can be
traced by the issuer. It means that we can use slightly modified backward search algorithm
presented in Chapter 2 for the discovery of the contex in Step 2 of the algorithm presented
in Sect. 3.5. In such a case, Linear resolution with Selection function for General logic pro-
grams (SLG) resolution of XSB prolog can be used to compute answers to queries according
to the WF model for RT	 [34]. XSB is a research-oriented, commercial-grade Logic Pro-
gramming system for Unix and Windows-based platforms. XSB provides standard prolog
functionality but also supports negations and constraints. Using SLG resolution XSB prolog
can correctly answer queries for which standard prolog gets lost in an infinite branch of a
search tree, where it may loop infinitely. A number of interfaces to other software systems
including Java and ODBC are available. DLV datalog [43] and the Smodels system [75] can
also be used to provide an initial implementation of RT	. The DLV system [43] is a system
for disjunctive logic programs. It is distributed as a command line tool for both Windows
and Linux operation systems. DLV is capable of dealing with disjunctive logic programs
without function symbols allowing for strong negations, constraints and queries. DLV uses
two different notions of negation: negation as failure and true (or explicit) negation. By
default, DLV handles negation as failure by constructing the stable model semantics for the
program. This standard behaviour can be changed using a command line option and then a
WF model is built instead. The true or explicit negation expresses the facts that explicitly
are known to be false. On the contrary, negation as failure does not support explicit assertion
of falsity. Models of programs containing true negation are also called “answer sets”. The
Smodels system [75] provides an implementation of the well-founded and stable model se-
mantics for range-restricted function-free normal programs. The Smodels system allows for
efficient handling of non-stratified ground programs and supports extensions including built-
in functions, cardinality, and weight constraints. The Smodels system is available either as a
C++ library that can be called from user programs or as a stand-alone program with default
front-end (lparse).

Dynamic Behaviour Apart from providing an implementation of the credential chain
discovery algorithm one should also consider how and when an entity becomes the member
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of the coord role of a given coordinator.
In our scenario, each entity can add a new coordinator to the set of coordinators. One

possible sequence of operations for a coordinator A to introduce a new coordinator D could
be the following:

1. A adds D to A.agreeToAdd.

2. A computes the member set of role A.addCoord (and by this also the member set
of roles A.allCandidates, A.objectionToAdd, and A.allCoord which also are volatile
roles).

3. A checks if D is a member of A.addCoord.

4. If D is a member of A.addCoord it means that there is no objection at the moment for
D to become a coordinator. In this case, A adds D to A.coord and removes D from
A.agreeToAdd.

5. If D is not a member of A.addCoord it means that at least one coordinator put D on
the black list (i.e. has D as a member of its disagreeToAdd role). In such a case A
removes D from A.agreeToAdd.

In theory, we prefer that each role is monotonic: once an entity becomes a member of a role
it stays there forever. In practice we cannot expect to be able to forbid someone to remove
a member from a role. Even in a system like ours, which supports only a restricted form
of monotonicity, some roles are inherently dynamic. In our example scenario for instance,
an entity D might be a member of role A.addCoord at some moment, but will not be five
seconds later if, in the meantime, some other coordinator addedD to its objectionToAdd role.
Clearly, depending on the actual application, the entities must agree on the way the roles are
used: what is sufficient in one application may be intolerable in another.

3.7 Related Work
So far little attention has been given to trust management in virtual communities. Most
of the existing approaches focus on reputation-based trust models in P2P networks [92].
Abdul-Rahman and Hailes [6] propose a trust model that is based on real world social trust
characteristics. They also find formal logic based trust management to be ill suited as a
general model of trust. To prove this claim Abdul-Rahman and Hailes refer to the early work
of Burrows and Abadi [32], and Gong, Needham, and Yahalom [52], which are more relevant
to formal protocol verification than to formal reasoning on trust management. To support
their work Abdul-Rahman and Hailes claim that logic based trust management systems are
not suitable to be automated - the existing literature on automated trust negotiation (ATN)
yields a contradictory statement (see Seamons et al. [89]). Pearlman et al. [80] present a
Community Authorisation Service - a central management unit for a community that helps to
enforce the policy of a virtual community. Such a central point of responsibility does not fit
well in the spirit of P2P networks because of their highly distributed nature. Pearlman et al.
also require that there a centralised policy exists for a virtual community. However, the policy
of a virtual community may have a distributed character and can be seen as a product of the
policies of the community members. Boella and van der Torre [29] take the same direction
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and emphasise the distinction between authorisations given by the Community Authorisation
Service and permissions granted by resource providers in virtual communities of agents.
They regard authorisation as a means used by community authorities to regulate the access
of customers to resources that are not under control of these authorities. According to Boella
and van der Torre, permission can be granted only by the actual resource owner.

As we conclude in Section 3.2, virtual communities are also not supported by the existing
trust management languages, even though the general requirements for such languages have
been investigated [89].

Herzberg et al. propose in [54] a prolog-based trust management language (DTPL) to-
gether with a non-monotonic version of it (TPL). Their approach is different from ours in the
sense that TLP allows for negative certificates namely “certificates which are interpreted as
suggestions not to trust a user”. This far-reaching approach leads to a more complex logical
interpretation, which includes conflict resolution. As opposed to this, our approach is tech-
nically simpler and enjoys a well-established semantics. Jajodia et al. [55], Wang et al. [99],
Barker and Stuckey [16], have in common that they impose a stratified use of negation. Be-
cause of this, they can refer to the perfect model semantics. As we explained in Section 3.4,
in the context of DTM, we cannot expect policies to be stratified. Our approach is thus more
powerful than the approaches based on the stratifiable negation. Dung and Thang in [42]
propose a DTM system based on logic programming and the stable model semantics [50].
They provide a general sufficient condition that guarantees the monotonicity wrt the client
submitted credentials. In our work we show that a TM system can be non-monotonic not
only in a local setting, but also when the context for negation is known.

3.8 Conclusions
We present the language RT	, which adds a construct for ‘negation-in-context’ to the RT0

trust management system. We argue the necessity of such a construct and illustrate its use
with scenarios from virtual communities which cannot be expressed within the RT frame-
work.

We provide a semantics for RT	 by translation to general logic programs. We show that,
given the complete policy, the membership relation can be decided by running the translation
in systems such as XSB, DLV datalog and Smodels. We also show how, for the case that
credentials are issuer traceable [67], the chain discovery algorithm for RT0 can be extended to
RT	. We are currently employing RT	 to specify virtual community policies in the Freeband
project I-SHARE.

In section 3.5 we have assumed that the credentials are issuer traceable and that we are
able to obtain all relevant credentials. In our scenario this is realistic; as the coordinators of a
virtual community play a central role, they are generally assumed to be available sufficiently
often and have sufficient resources to store their own credentials. In general collecting all
credentials can be difficult, for example, credentials may be stored elsewhere, entities may
be unreachable or messages may be lost. In such a situation, we cannot safely determine that
A is not in B’s role r by absence of credentials. Instead we could ask B to explicitly state
that A is not a member of B.r. This is sufficient if we know the context of a role (and thus
which negative facts we need).
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An important result of Chapter 2 and Chapter 3 is that when using RT for realistic examples,
we need to use different members from the RT family in order to be able to model more
sophisticated security policies at different levels of sophistication. For instance, if one needs
parameterised roles, one needs to use RT1. This is however still not sufficient to model
threshold or separation of duty policies. To model these, one needs at least RTT which
introduces manifold roles. Then we show that, to model making access control decisions in
virtual communities, the whole RT family is not sufficient and we propose RT	 in order to
handle this problem. We observe that this variety of dialects makes RT hard to use. From the
usability view, one would prefer to use the simplest syntax possible, but, at the same time,
having maximum flexibility in order to be able to express the maximum range of different
security policies. From the implementation point of view, we regard it as a problem that the
type system of RT exists only for the simplest member of the RT family: RT0.

The goal of this chapter is therefore twofold: (1) we want to have a uniform flexible syn-
tax, and (2) we want to have a storage type system that is at least as good as that of RT0, but
which applies to the whole language. As usual in trust management we use logic program-
ming both for the syntax and as the semantics provider for our trust management language.
The problem we need to solve is how to combine the flexibility of logic programming with
the decentralisation of RT. Distributed storage is the crucial aspect of decentralised trust
management.

To achieve our goals, in this chapter we propose Core TuLiP - the theoretical foundations
of a trust management language based on logic programming. We show that Core TuLiP is
expressive enough to handle security policies of RT0, RT1, RT2, RTT, and RTD (on the other
hand, Core TuLiP does not support non-monotonic policies and cannot express policies of
RT	). Core TuLiP deals with distributed storage of credentials by the means of a mode
system and it enjoys uniform syntax and semantics based on moded logic programming.

The contents of this chapter was first published as M. R. Czenko and S. Etalle. Core
TuLiP - Logic Programming for Trust Management. In Proc. 23rd International Conference
on Logic Programming, ICLP 2007, Porto, Portugal, volume 4670 of LNCS, pages 380–394,
Berlin, 2007. Springer Verlag.
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4.1 Introduction

In Chapter 2 we present one of the most successful TM systems: RT defined by Li, Winsbor-
ough and Mitchell [66, 67]. Recall that RT has an LP-based declarative semantics, a syntax
which is similar to that of SDSI [36], and offers the possibility of storing credentials either
by the issuer and/or by the subject. The location where the credential is stored is determined
by the type of the credential. Li et al. show that if all credentials are well-typed then there
exists a terminating credential chain discovery algorithm which determines whether a given
statement is valid in the present state.

Although the RT family is successful in achieving its goals, we believe that the RT family
presents drawbacks which are worth investigating and improving. In particular, RT syntax
is inflexible to the extent that to accommodate natural things such as separation of duty or
thresholds, one has to resort to a number of extensions (RT1 until RTD, and RTT plus RT	
introduced in Chapter 3), which makes the language harder to use and understand. Secondly,
while languages from the RT family enjoy a declarative reading, this reading does not reflect
the crucial storage information given by the types of RT0.

One could speculate that to solve these problems one should simply translate each lan-
guage from the RT family into Logic Programming (as the semantics for the RT family is
given in terms of Datalog), and then use the latter to specify and prove authorisation state-
ments. This is however inaccurate, as this translation would lose one of the essential elements
that make RT a trust management system, in particular the information concerning where
credentials should be stored and how credentials can be found when needed.

In this chapter we present Core TuLiP, which is the theoretical foundation of the TuLiP
(Trust management system based on Logic Programming) system we present in Chapter 6.
CoreTuLiP can be seen as a subset of (function-free) moded logic programming, with the
essential additional feature that the clauses are not stored at a central authority, but are dis-
tributed across the different principals involved in the system. The mode information deter-
mines where a clause will be stored and a form of well-modedness is used to guarantee that,
as the computation progresses, enough information is available to find the clauses needed to
build a proof of the query being evaluated. Since credentials are distributed, CoreTuLiP is
not amenable to SLD resolution, and requires a mix of top-down and bottom up reasoning
(we already use a similar approach in Chapter 3 when defining the extended credential chain
discovery for RT	). Here, we present a terminating algorithm which is able to answer well-
moded queries, together with the soundness and completeness result. Finally, we show that
RT0, the core language of the RT family, is basically equivalent to a subset of CoreTuLiP.
Doing so, we prove that it is possible to define a true trust management language which is as
expressive as RT0 also in terms of credential distribution without giving up the established
LP formalism.

CoreTuLiP, based on LP, has a more flexible underlying syntax than RT, and can be
extended in order to increase the expressive power of the language further (we do so in
Chapter 6 where we show how Core TuLiP supports user-defined constraints and external
constraint evaluation algorithms). Even without any extensions, Core TuLiP already allows
one to express threshold and separation of duty policies, which require special additions to
RT0.

The chapter is structured as follows: in Sect. 4.2 we introduce the basics of moded Logic
Programming. In Sect. 4.3 we introduce CoreTuLiP. In Sect. 4.4 we present the Lookup
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and Inference AlgoRithm, and we show that it is sound and complete w.r.t. the standard LP
semantics. In Sect. 4.5 we compare RT0 with CoreTuLiP. Finally, in Sect. 4.6 we present the
related work and then we conclude the chapter and propose future research in Sect. 4.7.

4.2 Preliminaries on Logic Programs
The reader is assumed to be familiar with the terminology and the basic results of the se-
mantics of logic programs [10, 69]. Here, we refer to function-free (Datalog-like) logic
programs and we adopt the notation of Apt [10]. We denote atoms by A,B,H, . . ., queries
by A,B,C, . . . (following the notation used by Apt [10], queries are simply conjunctions
of atoms, possibly empty), clauses by c, d, . . ., and programs by P . The empty query is
denoted by �. For any syntactic object (e.g. atom, clause, query) o, we denote by Var(o)
the set of variables occurring in o. Given a substitution σ = {x1/t1, ..., xn/tn} we say that
{x1, . . . , xn} is its domain (denoted by Dom(σ)) and that Var({t1, ..., tn}) is its range (de-
noted by Ran(σ)). Further, we denote by Var(σ) = Dom(σ) ∪ Ran(σ). If t1, ..., tn is a per-
mutation of x1, ..., xn then we say that σ is a renaming. The composition of substitutions is
denoted by juxtaposition (θσ(X) = σ(θ(X))). We say that a syntactic object (e.g. an atom)
o is an instance of o′ iff for some σ, o = o′σ; o is called a variant of o′, written o ≈ o′ iff o
and o′ are instances of each other. A substitution θ is a unifier of objects o and o′ iff oθ = o′θ.
We denote by mgu(o, o′) any most general unifier (mgu, in short) of o and o′. Computations
are sequences of derivation steps. The non-empty query q : A, B,C and a clause c : H ← B
(renamed apart w.r.t. q) yield the resolvent (A,B,C)θ, provided that θ = mgu(B,H). A
derivation step is denoted by A, B,C θ=⇒P,c (A,B,C)θ where c is called its input clause,
and B is called the selected atom of q. A derivation is obtained by iterating derivation steps.

A maximal sequence δ := B0
θ1=⇒P,c1 B1

θ2=⇒P,c2 · · ·Bn
θn+1=⇒P,cn+1 Bn+1 · · · of deriva-

tion steps is called an SLD derivation of P ∪ {B0} provided that for every step the standard-
isation apart condition holds, i.e. the input clause employed at each step is variable disjoint
from the initial query B0, and from the substitutions and the input clauses used at earlier
steps. If δ is maximal and ends with the empty query (Bn = �) then the restriction of θ to
the variables of B is called its computed answer substitution (c.a.s., for short).

Moded Programs. Informally speaking, a mode indicates how the arguments of a rela-
tion should be used, i.e. which are the input and which are the output positions of each atom,
and allows one to derive properties such as absence of run-time errors for Prolog built-ins
and absence of floundering for programs with negation [12]. Most compilers encourage the
user to specify a mode declaration.

Definition 4.2.1 (Mode) Consider an n-ary predicate symbol p. By a mode for p we mean
a function mp from {1, . . . , n} to {In,Out}.

If mp(i) = In (resp. Out), we say that i is an input (resp. output) position of p (with re-
spect tomp). We assume that each predicate symbol has a unique mode associated to it; mul-
tiple modes may be obtained by renaming the predicates. We use the notation (X1, . . . , Xn)
to indicate the mode m in which m(i) = Xi. For instance, (In,Out) indicates the mode
in which the first (resp. second) position is an input (resp. output ) position. To benefit from
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the advantage of modes, programs are required to be well-moded [12]: they have to respect
some correctness conditions relating the input arguments to the output ones. We denote by
In(A) (resp. Out(A)) the sequence of terms filling in the input (resp. output) positions ofA,
and by VarIn(A) (resp. VarOut(A)) the set of variables occupying the input (resp. output)
positions of A.

Definition 4.2.2 (Well-Moded) A clause H ←− B1, . . . , Bn is well-moded if ∀ i ∈ [1, n]

VarIn(Bi) ⊆
⋃i−1
j=1 VarOut(Bj) ∪VarIn(H), and

VarOut(H) ⊆ ⋃n
j=1 VarOut(Bj) ∪VarIn(H).

A query A is well-moded iff the clause H ←− A is well-moded, where H is any (dummy)
atom of zero arity. A program is well-moded if all of its clauses are well-moded.

Note that the first atom of a well-moded query is ground in its input positions and a
variant of a well-moded clause is well-moded. The following Lemma, due to [11], shows the
“persistence” of the notion of well-modedness.

Lemma 4.2.3 An SLD-resolvent of a well-moded query and a well-moded clause that is
variable-disjoint with this query, is well-moded. ut

As a consequence of Lemma 4.2.3 we have the following well-known property [11]:

Corollary 4.2.4 Let P be a well-moded program and A be a well-moded query. Then for
every computed answer σ of A in P , Aσ is ground. ut

A straightforward consequence of this Corollary is the following one:

Corollary 4.2.5 Let H ←− B1, . . . , Bn be a clause in a well-moded program P . If A is a
well-moded atom such that γ0 = mgu(A,H) and for every i ∈ [1, j], j ∈ [1, n − 1] there
exists a successful derivation Biγ0, . . . , γi−1

γi−→P �, then Bj+1γ0, . . . , γj is a well-moded
atom. ut

4.3 Core TuLiP
We now introduce CoreTuLiP, which to a first approximation is a variant of moded LP. In
CoreTuLiP, there are two disjoint types of predicates: (user-defined) credential predicates
and built-in constraint predicates. In CoreTuLiP,

• a credential predicate has arity two;

• in an atom with a credential predicate, we call the term filling in the first argument
position the issuer, and the one filling in the second argument position the subject.

• a credential is a clause defining a credential predicate. Then, the issuer of a credential
is the term filling in the first argument position of the head.

We postpone the discussion on the constraints till Chapter 6 where we present the full version
of the language. In the full version of TuLiP a credential predicate may have more than two
arguments and it is also possible to use user defined constraints.
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Notation From this Chapter, we strictly follow the logic programming notation, where
terms starting with an uppercase letter are reserved for variables. Therefore, from now on,
role names and entities are strings of characters starting with a lowercase letter.

The following two examples illustrate the use of Core TuLiP credentials and demonstrate
the expressive power of Core TuLiP.

Example 4.1 To access a project document at the University of Twente (UT) one must be
either a project member and a Ph.D. student at the UT or at one of the partner universities, or
be approved by two different assistant professors from the UT. Jerry and Jeroen are assistant
professors at the UT. Jerry states that a project member from one of the partner universities
can access the document if she is approved by at least one project member who is also an
associate professor at that university. Jeroen approves anyone who is also approved by a
project leader at the UT. Sandro is a project leader at the UT. This scenario can be modelled
with the following set of credentials.

(1) access_document(ut, X) ←− (4) approve_access(jeroen, X) ←−
project_member(ut, X), project_leader(ut, L),
prof(ut, A1), approve_access(L,X).
prof(ut, A2), (5) project_leader(ut, sandro).
A1 6= A2, (6) phd_student(ut,marcin).
approve_access(A1, X), (7) approve_access(sandro, rico).
approve_access(A2, X). (8) approve_access(jeffrey, rico).

(2) access_document(ut, X) ←− (9) associate_prof(tud, jeffrey).
project_partner(ut, P ), (10) project_member(ut, jerry).
project_member(P,X), (11) project_member(ut, charles).
phd_student(P,X). (12) prof(ut, jerry).

(3) approve_access(jerry, X) ←− (13) prof(ut, jeroen).
project_partner(ut, P ), (14) project_partner(ut, ut).
project_member(P,X), (15) project_partner(ut, tud).
associate_prof(P,A), (16) project_member(tud, jeffrey).
project_member(P,A), (17) project_member(tud, rico).
approve_access(A,X).

In the example we see that a credential can represent a role assignment or directly a per-
mission. For instance, in credential (6) ut assigns role phd_student to marcin. On the
other hand, credential (1) represents a permission to access a document at the University
of Twente. We see that a credential can be a simple logical fact (credentials (5)-(17)),
or a more sophisticated rule (credentials (1)-(4)). A “fact” credential is a direct equiva-
lent of the RT0 Type-1 credential (Simple Member). Thus, credentials (5)-(17) can be di-
rectly translated into RT0 credentials. For instance, the RT0 equivalent of credential (15) is:
ut.project_partner ←− tud. Credential (4) is very similar to the RT0 Type-3 credential (Link-
ing Inclusion), but it is more general in that the entity occurring in the body of the credential
(ut) can be different from the issuer of the credential (jeroen). In order to express credentials
(2) and (3) in RT0 one would have to introduce intermediate roles. For instance, credential
(3) can be represented by the following set of RT0 credentials (here <project_partner> shall
be replaced by each project partner of ut - ut and tud in our setting):
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jerry.approve_access ←− ut.project_partner.approve_access
<project_partner>.approve_access ←− <project_partner>.project_member ∩

<project_partner>.member_prof.approve_access
<project_partner>.member_prof ←− <project_partner>.project_member ∩

<project_partner>.associate_prof

Credential (1) cannot be expressed in RT0, neither can (1) be expressed in RT1 or in RT2.
This is because the RT framework does not support constraints to the extent that constraints
are supported in Core TuLiP. In order to model a statement like “two different assistant pro-
fessors from the UT must approve the access to the project document” one needs to use at
least RTT. We show this in the the next example.

Example 4.2 Core TuLiP is already expressive enough to express threshold and separation
of duty policies. Modelling a threshold or a separation of duty policy using languages from
the RT family requires the adoption of special operators (which are present in more expressive
members of the RT family RT1, RT2, RTT, or RTD). Consider for instance the following
statement presented by Li et al. [66]: “a says that an entity is a member of a.r if one member
of a.r1 and two different members of a.r2 all say so”. This policy cannot be expressed in
RT0, and to express this in RT one needs to use the manifold roles, which extend the notion
of roles by allowing role members to be collections of entities (rather than just principals).
This is done in RTT by defining the operators � and ⊗. A type-5 credential of the form
a.r ←− b1.r1 � b2.r2 says that {s1 ∪ s2} is a member of a.r if s1 is a member of b1.r1 and
s2 is a member of b2.r2. A type-6 credential a.r ←− b1.r1 ⊗ b2.r2 has a similar meaning,
but it additionally requires that s1∩s2 = ∅. With these two additional types, one can express
the above statement using the following three credentials:

a.r ←− a.r4.r

a.r4 ←− a.r1 � a.r3
a.r3 ←− a.r2 ⊗ a.r2

In Core TuLiP, on the other hand, this policy can be expressed with the following single
credential:

r(a,X) :− r1(a, Y ), r(Y,X), r2(a, Z1), r2(a, Z2), Z1 6= Z2, r(Z1, X), r(Z2, X).

Notably, to express this, we don’t have to use manifold-like structures like the ones used in
the RT family.

In TM, a credential is always issued by some authority (for the sake of simplicity here we
identify authorities with the set of ground terms). In Example 4.1, the credential prof(ut, jerry)
is issued by ut (University of Twente), and has jerry as the subject. With this credential, ut
states that jerry is one of the professors at the University of Twente. In a practical setting,
this credential is signed by ut, and ut and jerry are placeholders for the implementation de-
pendent identifiers (like public keys or URIs). We discuss the practical issues concerning the
deployment of TuLiP in Chapter 5. Because each credential must have an issuer, it is natural
to expect that the issuer of a credential should be a ground term.
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Definition 4.3.1 Let cl : H ←− B1, . . . , Bn be a clause. We say that cl is well-formed if
it is well-moded and issuer(H) is a ground term.

Modes and Decentralised Storage. A credential predicate may have one of three le-
gal modes: (In, In), (In,Out), and (Out , In). The reason why the mode (Out ,Out) is
considered illegal is that it would allow queries with completely uninstantiated arguments
like prof(X,Y ), in which neither the issuer nor the subject is specified. Unlike in LP, such
queries cannot be answered in a TM system because the system does not know where to look
for relevant credentials, which could be issued and stored by any authority. By requiring that
at least one of the arguments be input, and that the credentials be traceable (see Definition
4.3.2 below) we will be able to find the credentials we need to construct the proofs we need.

The salient feature of a trust management system is that credentials are stored in a dis-
tributed way. For instance, in Example 4.1, the credential prof(ut, john) which is issued by ut
could be stored by either ut or john. Storing it by john has the advantage that john does not
have to fetch the credential at ut every time he needs it, which in a highly distributed system
may be costly. We call the depositary of a credential the authority where the credential is
stored. In Core TuLiP, it is the mode of the head of a credential which determines the creden-
tial depositary (here, we allow only one mode per relation symbol, so each credential may be
stored at one place only; by allowing multiple modes we lift this limitation in the extended
system described in Chapter 6). Returning to Example 4.1, if mode(prof) is either (In, In)
or (In,Out), then the credential prof(ut, jerry) will be stored at ut, otherwise (if the mode is
(Out , In)), jerry will store the credential. Storing the credential at some other place would
make it unfindable. The definition below generalises this concept.

Definition 4.3.2 (Traceable, Depositary) We say that a clause cl : H ←− B1, . . . , Bn is
traceable if it is well-formed and one of the following conditions holds:

1. mode(H) ∈ {(In, In), (In,Out)} – in this case issuer(H) is the depositary of the
rule,

2. mode(H) = (Out , In), and subject(H)(= In(H)) contains a ground term - in this
case subject(H) is the depositary of the rule,

3. mode(H) = (Out , In) and subject(H) contains a variable. In this case we require
that there exists a prefix B1, . . . , Bk of the body such that

(a) mode(B1) = . . . = mode(Bk) = (Out , In),
(b) In(H) = In(B1),
(c) In(Bi+1) = Out(Bi), and is a variable, for i ∈ [1, k − 1],
(d) Out(Bk) contains a ground term,

In this case, we say that issuer(Bk)(= Out(Bk)) is the depositary of the rule.

The third case is complex, but it has the advantage of permitting the storage of a credential at
a third party (neither the issuer, nor the recipient). Notice, that when the prefix B1, . . . , Bk
in point 2 in the above definition consists of only one atom (i.e. when k = 1) then condition
(c) does not apply.
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ut sandro marcin rico jeffrey jerry tud
1, 2, 3, 4, 10, 11, 12, 13, 14 5 6 7, 8 9 − 15, 16, 17

Table 4.1: Entities and the credentials stored by each entity as shown in Example 4.3

Example 4.3 Consider the set of credentials from Example 4.1. The University of Twente,
the owner of a protected document, wants to have full control over the top-level access con-
trol policy for a document. Therefore, UT wants to store credentials (1) and (2) at the UT
secured server. UT also decides to store the credentials defining the members of a project
and the credentials defining the role prof. Jerry and Jeroen, the professors at the UT, both
have their own policy for approving access to a university document. The policy of Jerry is
given by credential (3) while the policy of Jeroen is given by credential (4). Although Jerry
(resp. Jeroen) is the issuer of credential (3) (resp. credential (4)), in order to guarantee that
credential (3) (resp. (4)) is always available, Jerry (resp Jeroen) stores the approve_access
credential at the university server. On the other hand, UT lets Sandro store the credential
assigning the role project_leader to Sandro (credential (5)) so that Sandro can monitor the
requests for this credential. Because there are many Ph.D. students at the university, each
Ph.D. student stores her credential. Similarly, each project partner stores the project part-
nership credential. Finally, Sandro (resp. Jeffrey) trusts Rico to store the approve_access
credential of which Sandro (resp. Jeffrey) is the issuer - thus Rico stores credentials (7) and
(8). Table 4.1 lists the entities and the credentials stored by each entity.

Now, we need to assign a mode to each credential atom so that the mode reflects the
desired storage location (the depositary) and guarantees that the credential is traceable (Def-
inition 4.3.2). Table 4.2 shows the credential predicate symbols and the associated mode.
Take for example credential (4). From Table 4.2, we have that mode(approve_access) =

(In, In) (In,Out) (Out , In)

access_document
project_member

prof

approve_access
project_leader
phd_student

associate_prof
project_partner

Table 4.2: The predicate symbols and the associated mode in Example 4.3

mode(project_leader) = (Out,In). Now if we look at credential (4) then we see that for this
mode assignment the credential is not well-moded, so it is also not well-formed and, as such,
not traceable. In order to make credential (4) well-moded and traceable, we need to change
the order of the atoms in the body to be as follows:

(4) approve_access(jeoren, X) ←− approve_access(L,X), project_leader(ut, L).

Now, we see that the atoms in the body satisfy the requirements stated in point 3 of Definition
4.3.2. We have to perform a similar action for credential (3). Here, in order to satisfy Defi-
nition 4.3.2 we form the prefix in the body (point 3) from the atoms approve_access(A,X),
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associate_prof(P,A), project_partner(ut, P ), followed by the remaining atoms (in any or-
der):

(3) approve_access(jerry, X) ←− approve_access(A,X), associate_prof(P,A),
project_partner(ut, P ), project_member(P,A),
project_member(P,X).

Finally, in order to make credential (2) well-moded (and by this also traceable) we need to
rewrite it as follows:

(2) access_document(ut, X) ←− phd_student(P,X), project_partner(ut, P ),
project_member(P,X).

Example 4.3 shows that the mode assigned to a credential atom may influence the order of
the atoms in the body. This may be counter-intuitive for the user and also makes the reading
of a credential more difficult. In Chapter 6 we show how to separate the meaning of the
credential from the actual storage given by the mode assignment.

We can now introduce the concept of a state.

Definition 4.3.3 A state P is a finite collection of pairs (a, Pa) where Pa is a collection of
traceable credentials and a is the depositary of these credentials.

The declarative semantics of a state is simply given in terms of logic programming as fol-
lows:constraints are user-defined)

Definition 4.3.4 Let P be the state {(a1, P1), . . . , (an, Pn)}, and A be an atom

• We denote byP (P) the set of clausesP1 ∪ · · · ∪ Pn. We callP (P) the LP-counterpart
of state P .

• We say that A is true in state P iff P (P) ∪ C |= A, where C is a first order theory
determining the meaning of built-in predicates.

4.4 The Lookup and Inference AlgoRithm (LIAR)
The goal of an authorisation system is to check whether a fact is true in a given state. Since
the state P can be very large and distributed across different agents, it is essential to have an
algorithm which takes care of computing whether a given query is true in P without having
to collect the entire P (P). An extra difficulty comes from the fact that clauses might easily
be mutually recursive, and that cases 2 and 3 of Definition 4.3.2 make it impossible to follow
a straightforward top-down reasoning. In this section we present a suitable algorithm. We
begin by giving the necessary definitions.

Definition 4.4.1 (Connected) We say that two atomsA andB that have mode (Out , In) are
connected if subject(A) is ground and subject(A) = subject(B).

Let A be an atom and S be a set of atoms. We adopt the following conventions:

(i) We write A
∼∈ S iff ∃A′ ∈ S, such that A′ ≈ A (i.e. A′ is a renaming of A).
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(ii) We write A
∼
/∈ S iff @A′ ∈ S such that A′ ≈ A.

(iii) We write A
θ
↪→ S iff ∃A′ ∼∈ S standardised apart w.r.t. A such that γ = mgu(A,A′)

and Aθ ≈ Aγ.

Definition 4.4.2 Let A be an atomic well-moded query. We define the Lookup and Inference
AlgoRithm (LIAR) which given a state P and a query A as an input returns the (possibly
empty) sets of atoms FACTSTACK and GOALSTACK. The algorithm is reported in Listing
4.1.

Listing 4.1: The Lookup and Inference AlgoRithm (LIAR). We assume that dummy is a reserved
predicate symbol, with mode (Out , In). Statements in boxes are optional and included only for

optimisation purposes.

INPUT : A. /* A is the initial atomic query */
2 Init:

CLSTACK : {� ←− A} ;
4 FACTSTACK = GOALSTACK = VISITED = ∅ ;

SATISFIED = FALSE ;
6

REPEAT
8 Phase 1 (Top-down resolution):

CHOOSE:
10 c : H ←− B, C,D ∈ CLSTACK and

B′ ⊆ FACTSTACK, such that the following conditions hold:
12 (i) B and B′ unify with mgu θ,

(ii) Cθ is well-moded,

14 (iii)Cθ
∼
/∈ GOALSTACK,

(iv) IFmode(C) = (Out , In) THEN subject(Cθ) /∈ VISITED ENDIF

16 ADD Cθ to GOALSTACK;
IF mode(C) ∈ {(In,Out), (In, In)} THEN

18 FETCH at issuer(Cθ) all clauses {c1, . . . , cn} whose head unifies
with Cθ with mgus {γ1, . . . , γn} respectively ;

20 FOR EACH ciγi ∈ {c1γ1, . . . , cnγn}DO

IF ciγi

∼
/∈ CLSTACK THEN ADD ciγi to CLSTACK ENDIF

22 END FOR EACH
ELSEIF mode(C) = (Out , In) THEN

24 FETCH all clauses {c1, . . . , cn} stored at subject(Cθ) whose head
has mode (Out , In) ;

26 ADD subject(Cθ) to VISITED;
FOR EACH ci ∈ {c1, . . . , cn}DO

28 IF ci
∼
/∈ CLSTACK THEN ADD ci to CLSTACK ENDIF

END FOR EACH
30 ENDIF

Phase 2 (Bottom-up model-building):
32 REPEAT

CHOOSE: H ←− B ∈ CLSTACK and B′ ⊆ FACTSTACK,
34 such that B and B′ unify with mgu θ ;



Section 4.4. The Lookup and Inference AlgoRithm (LIAR) 73

IFHθ /∈ FACTSTACK THEN ADD Hθ to FACTSTACK ENDIF;
36 IF mode(H) = (Out , In) AND issuer(Hθ) /∈ VISITED THEN

ADD to CLSTACK the clause:
38 dummy(X, issuer(Hθ)) ←− dummy(X, issuer(Hθ))

where mode(dummy) = (Out , In)
40 ENDIF

UNTIL nothing can be added to FACTSTACK;
42 IF A is ground and A ∈ FACTSTACK THEN SATISFIED = TRUE ENDIF

UNTIL SATISFIED OR nothing can be added to FACTSTACK and CLSTACK;
44 OUTPUT = FACTSTACK;

The algorithm maintains three stacks: CLSTACK contains the set of clauses collected so
far, FACTSTACK contains the set of atomic logical consequences inferred from CLSTACK,
and GOALSTACK contains the set of atomic goals already processed (to handle loops). Ad-
ditionally, the VISITED stack contains the set of entities that have been visited during the
processing. Initially, CLSTACK contains a single clause constructed from the initial atomic
query A; the other stacks are empty. The algorithm is divided in two phases. Phase 1 con-
tains the credential discovery. First, it selects a new well-moded atom Cθ from the body of
a clause in CLSTACK and then, depending on its mode, it fetches the new credentials from
either issuer(Cθ) or subject(Cθ). By fetching a credential we understand connecting to a re-
mote credential server corresponding to the entity responsible for storing this credential (we
discuss the deployment of TuLiP in Chapter 5). The fetched credentials are then added to
the CLSTACK. Notice that, when mode(C) = (Out , In), all clauses whose head has mode
(Out , In) must be fetched from subject(Cθ), and not only the clauses whose head unifies
with Cθ. This is because in this case one does not know which credentials may be needed
to prove Cθ, yet. To overcome this problem, the algorithm overestimates and fetches all
credentials with the right mode being stored at subject(Cθ). In Phase 2, the model of the
set of clauses in the CLSTACK is built bottom-up. Newly inferred facts are added to the
FACTSTACK. For the facts having mode (Out , In), the algorithm adds a dummy clause to
CLSTACK. The mode of the dummy predicate symbol is (Out , In) and the second argument
of dummy is set to issuer(Hθ), where Hθ is the newly inferred fact. Later, in Phase 1 all
(Out , In) credentials stored at issuer(Hθ) will be fetched and added to CLSTACK. The algo-
rithm checks the issuer(Hθ) because the issuer of Hθ may store other (Out , In) credentials
that can be relevant. As in case of the (Out , In) credentials we do not know which creden-
tial are actually needed, the algorithm overestimates and fetches all (Out , In) credentials
stored at issuer(Hθ). This way “subject traceable” chains can be discovered properly. The
algorithm extends naturally to queries containing more than one atom.

In answering a specific query only one instance of the LIAR algorithm is involved. In
most typical scenario the algorithm is run by the same entity which issues the query. It is also
possible, however, that the entity issuing the query connects to a remote machine on which
LIAR is running (possible deployment scenarios for LIAR are discussed in Chapter 5).

Example 4.4 Assume the following state (the credentials shown are the Core TuLiP equiva-
lents of the credentials shown in the RT0 policy presented in Chapter 2 in Example 2.7):

ePub:
(1) spdiscount(ePub, X) ←− preferred(eOrg, X),member(acm, X).
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eOrg:
(2) preferred(eOrg, X) ←− university(eOrg, Y ), student(Y,X).
(3) university(eOrg, X) ←− accredited(abu, X).

abu:
(4) accredited(abu, stateU).

registrarB:
(5) student(stateU, X) ←− student(registrarB, X).

alice:
(6) student(registrarB, alice).
(7) member(acm, alice).

Here we show the credentials and their depositaries. We have then that ePub stores
credential (1), eOrg stores credentials (2) and (3), abu stores credential (4), registrarB stores
credential (5), and alice stores credentials (6) and (7). For this storage configuration we have
the following mode assignment:

mode(spdiscount) = mode(preferred) = (In, In),
mode(university) = mode(accredited) = (In,Out),

mode(student) = mode(member) = (Out , In).

We present how LIAR evaluates the goal: spdiscount(ePub, alice). In the presentation we
show the contents of CLSTACK, GOALSTACK, FACTSTACK, and VISITED as the algorithm
progresses.

After initialisation, CLSTACK contains one clause:

CLSTACK :
(C1) : � ←− spdiscount(ePub, alice).

GOALSTACK : ∅.
FACTSTACK : ∅.
VISITED : ∅.

The algorithm enters Phase 1 (line 8 in Listing 4.1). Clause (C1) is the only clause in
CLSTACK and is selected with the new goal Cθ = spdiscount(ePub, alice). In this case θ is
an empty substitution. The algorithm adds Cθ to the GOALSTACK (line 16) and then checks
the mode of the selected goal (line 17). Because mode(spdiscount) = (In, In) the algorithm
knows it should search for the credentials defining spdiscount at issuer(Cθ) = ePub. ePub
stores only one credential (credential (1)) whose head unifies with the selected goal with
mgu {X/alice}. As the consequence, the following clause is fetched from ePub and added
to CLSTACK:

spdiscount(ePub, alice) ←− preferred(eOrg, alice),member(acm, alice).

The algorithm proceeds to Phase 2 (line 31). As the FACTSTACK is empty and all the clauses
in CLSTACK depend on other atoms, no new fact is added to FACTSTACK and the algorithm
returns to Phase 1. The contents of the CLSTACK, GOALSTACK, FACTSTACK, and VISITED
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is the following:

CLSTACK :
(C1) � ←− spdiscount(ePub, alice).
(C2) spdiscount(ePub, alice) ←− preferred(eOrg, alice),member(acm, alice).

GOALSTACK :
(G1) spdiscount(ePub, alice)

FACTSTACK : ∅.
VISITED : ∅.

Notice that all the clauses in the CLSTACK are well-moded. The algorithm chooses
clause (C2) and selects preferred(eOrg, alice) as the new goal. The new goal is then added
to GOALSTACK. As mode(preferred) = (In, In) the algorithm contacts eOrg for the creden-
tials matching the selected goal. eOrg stores two credentials: credential (2) and credential
(3). The head of credential (2) unifies with the selected goal with mgu {X/alice}. Thus,
the following clause is fetched from eOrg and added to CLSTACK:

preferred(eOrg, alice) ←− university(eOrg, Y ), student(Y, alice).

The algorithm moves to Phase 2, but here still nothing new can be added to FACTSTACK,
so the algorithm returns to Phase 1. The contents of the CLSTACK, GOALSTACK, and
FACTSTACK is the following:

CLSTACK :
(C1) � ←− spdiscount(ePub, alice).
(C2) spdiscount(ePub, alice) ←− preferred(eOrg, alice),member(acm, alice).
(C3) preferred(eOrg, alice) ←− university(eOrg, Y ), student(Y, alice).

GOALSTACK :
(G1) spdiscount(ePub, alice)
(G1) preferred(eOrg, alice)

FACTSTACK : ∅.
VISITED : ∅.

Assume that the clause selected is again clause (C2). Here the algorithm cannot select
the second subgoal, member(acm, alice), of clause (C2) because the preceding subgoal, pre-
ferred(eOrg,alice), is not yet proven. No goal has been selected from clause (C3) from the
CLSTACK yet. The first subgoal in clause (C3), university(eOrg, Y ), satisfies conditions (i-
iv) (lines 12-15) and can be selected as the new goal. Based on the mode associated with
the university credential predicate (mode(university) = (In,Out)), the algorithm fetches the
following clause from eOrg and adds to the CLSTACK:

university(eOrg, X) ←− accredited(abu, X).

The algorithm enters Phase 2 again, but because we still do not have any facts in CLSTACK,
FACTSTACK cannot be extended yet, and algorithm moves back to Phase 1. The contents of
the CLSTACK, GOALSTACK, and FACTSTACK is the following:
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CLSTACK :
(C1) � ←− spdiscount(ePub, alice).
(C2) spdiscount(ePub, alice) ←− preferred(eOrg, alice),member(acm, alice).
(C3) preferred(eOrg, alice) ←− university(eOrg, Y ), student(Y, alice).
(C4) university(eOrg, X) ←− accredited(abu, X).

GOALSTACK :
(G1) spdiscount(ePub, alice)
(G1) preferred(eOrg, alice)
(G3) university(eOrg, Y )

FACTSTACK : ∅.
VISITED : ∅.

The new goal selected in Phase 1 is accredited(abu, X) from clause (C4). This is because
there is no subgoal in clauses (C1 − C3) that can be selected. Because mode(accredited) =
(In,Out), the algorithm (lines 17-22) goes to abu and from there the algorithm fetches the
following clause:

accredited(abu, stateU).

This clause is then added to CLSTACK. The algorithm proceeds to Phase 2. Here, for the
first time during this evaluation, CLSTACK contains a simple fact: accredited(abu, stateU).
This clause is chosen by the algorithm (lines 33-34) and the atom accredited(abu, stateU) is
added to FACTSTACK (line 35). But, now also (C4) can be selected from CLSTACK for which
B = accredited(abu, X) unifies with B′ = accredited(abu, stateU) (lines 33-34) with mgu
θ = {X/stateU}. This means that H = university(eOrg, X)θ = university(eOrg, stateU)
is also added to FACTSTACK. No more new facts can be inferred at the moment and the
algorithm returns to Phase 1 with the following contents of the stacks:

CLSTACK :
(C1) � ←− spdiscount(ePub, alice).
(C2) spdiscount(ePub, alice) ←− preferred(eOrg, alice),member(acm, alice).
(C3) preferred(eOrg, alice) ←− university(eOrg, Y ), student(Y, alice).
(C4) university(eOrg, X) ←− accredited(abu, X).
(C5) accredited(abu, stateU).

GOALSTACK :
(G1) spdiscount(ePub, alice)
(G1) preferred(eOrg, alice)
(G3) university(eOrg, Y )
(G4) accredited(abu, X)

FACTSTACK :
(F1) accredited(abu, stateU)
(F2) university(eOrg, stateU)

VISITED : ∅.
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Because university(eOrg, stateU) is in FACTSTACK, it means it is proven to be true, and
now the algorithm can select the second subgoal from clause (C3). We have (lines 10-
15): B = university(eOrg, Y ), B′ = university(eOrg, stateU), and θ = mgu(B,B′) =
{Y/stateU}. Therefore, the new goal is student(Y, alice)θ = student(stateU, alice). Be-
cause mode(student) = (Out , In) the algorithm knows that it should search for the related
credentials at subject(student(stateU, alice)) = alice (lines 23-29). Alice stores two creden-
tials that have mode (Out , In): credential (6) and credential (7). Because the algorithm tries
to discover the related credentials by starting from the subject, the algorithm does not know
which (Out , In) credentials are relevant and which are not. For this reason, the algorithm
fetches all credentials that have mode (Out , In) from alice. In our example, the credentials
fetched from alice are credentials (6) and (7). The algorithm adds the fetched credentials to
CLSTACK and adds alice to VISITED. By adding alice to VISITED, the algorithm remem-
bers not to fetch any (Out , In) credentials from alice later during answering this query, as
all credentials moded (Out , In) have already been fetched.
The algorithm moves to Phase 2 where it selects the newly added clauses from CLSTACK
and adds student(registrarB, alice) and member(acm, alice) to FACTSTACK. Because
mode(student) = mode(member) = (Out , In), the algorithm adds the following two clauses
to CLSTACK:

dummy(X, registrarB) ←− dummy(X, registrarB).
dummy(X, acm) ←− dummy(X, acm).

No new fact can be generated at this point and the algorithm returns to Phase 1. The
contents of the stacks is the following:

CLSTACK :
(C1) � ←− spdiscount(ePub, alice).
(C2) spdiscount(ePub, alice) ←− preferred(eOrg, alice),member(acm, alice).
(C3) preferred(eOrg, alice) ←− university(eOrg, Y ), student(Y, alice).
(C4) university(eOrg, X) ←− accredited(abu, X).
(C5) accredited(abu, stateU).
(C6) student(registrarB, alice).
(C7) member(acm, alice).
(C8) dummy(X, registrarB) ←− dummy(X, registrarB).
(C9) dummy(X, acm) ←− dummy(X, acm).

GOALSTACK :
(G1) spdiscount(ePub, alice)
(G1) preferred(eOrg, alice)
(G3) university(eOrg, Y )
(G4) accredited(abu, X)
(G5) student(stateU, alice)

FACTSTACK :
(F1) accredited(abu, stateU)
(F2) university(eOrg, stateU)
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(F3) student(registrarB, alice).
(F4) member(acm, alice).

VISITED :
alice

The algorithm selects dummy(X, registrarB) as the new goal. The mode of dummy is (Out , In)
and the algorithm fetches all credentials moded (Out , In) from registrarB. As a conse-
quence, credential (5) is fetched and added to CLSTACK and registrarB is added to VISITED.
The algorithm moves to Phase 2.

In Phase 2, the algorithm selects the newly added clause student(stateU, X) ←−
student(registrarB, X). from CLSTACK for which student(registrarB, X) unifies with
student(registrarB, alice). As the result, student(stateU, alice) is added to FACTSTACK and
also dummy(X, stateU) ←− dummy(X, stateU). is added to CLSTACK. Because university(
eOrg, stateU) and student(stateU, alice) are both in FACTSTACK, also preferred(eOrg, alice)
is added to FACTSTACK. This in turn triggers addition of spdiscount(ePub, alice) to
FACTSTACK. Because initial goal (= spdiscount(ePub, alice)) is ground and spdiscount(
ePub, alice) is in FACTSTACK, the algorithm sets SATISFIED = TRUE and the algorithm
finishes (lines 42-43) with the following contents of the stacks:

CLSTACK :
(C1) � ←− spdiscount(ePub, alice).
(C2) spdiscount(ePub, alice) ←− preferred(eOrg, alice),member(acm, alice).
(C3) preferred(eOrg, alice) ←− university(eOrg, Y ), student(Y, alice).
(C4) university(eOrg, X) ←− accredited(abu, X).
(C5) accredited(abu, stateU).
(C6) student(registrarB, alice).
(C7) member(acm, alice).
(C8) dummy(X, registrarB) ←− dummy(X, registrarB).
(C9) dummy(X, acm) ←− dummy(X, acm).

(C10) student(stateU, X) ←− student(registrarB, X).
(C11) dummy(X, stateU) ←− dummy(X, stateU).

GOALSTACK :
(G1) spdiscount(ePub, alice)
(G1) preferred(eOrg, alice)
(G3) university(eOrg, Y )
(G4) accredited(abu, X)
(G5) student(stateU, alice)
(G6) dummy(X, registrarB)

FACTSTACK :
(F1) accredited(abu, stateU)
(F2) university(eOrg, stateU)
(F3) student(registrarB, alice)
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(F4) member(acm, alice)
(F5) student(stateU, alice)
(F6) preferred(eOrg, alice)
(F7) spdiscount(ePub, alice)

VISITED :
alice
registrarB

The following results show that LIAR algorithm is sound and complete w.r.t. the standard
LP semantics, i.e. the centralised algorithm based on the SLD resolution. We need the
following lemma.

Lemma 4.4.3 Let P be a state and FACTSTACK be the result of the algorithm execution for
some well-moded query. Let A be an atom in FACTSTACK. Then A is ground.

Proof. The proof proceeds by induction on the size of FACTSTACK. In the basic case
FACTSTACK is empty and so the proposition automatically holds.
Now, assume that FACTSTACK contains only ground atoms. We are proving that each time a
new atom is added to FACTSTACK, it is ground. Notice that an atom is added to FACTSTACK
as the result of the bottom-up evaluation of the facts in FACTSTACK and a clause selected
from CLSTACK. We have then two cases: (1) the clause selected from CLSTACK in Phase 2
of the algorithm has an empty body, (2) the clause selected from CLSTACK in Phase 2 of the
algorithm has a non-empty body.
Case 1: The clause selected from CLSTACK has an empty body.
In such a case, a fact can be added to FACTSTACK only if it is already in CLSTACK. Let H.
be a clause selected from CLSTACK. Recall that ∀C ∈ GOALSTACK, C is well-moded.

1. mode(H) ∈ {(In, In), (In,Out)}.
If H. ∈ CLSTACK then there must be some C in GOALSTACK, such that ∃θ =
mgu(H,C) and ∃H ′← . ∈ P such that H ′← . is stored at issuer(C), H = H ′θ,
and θ = mgu(H ′, C). But, by Definition 4.3.4 (State), all clauses in a state P
are traceable, so that ∀G ∈ GOALSTACK and ∀A← . ∈ P such that mode(G) ∈
{(In, In), (In,Out)}, A← . is stored at issuer(G), and ∃γ = mgu(A,G), Aγ is
ground and will be added to CLSTACK during Phase 1 of the algorithm. Then, as a
special case of the observation above, H must be ground.

2. mode(H) = (Out , In).

If H←. ∈ CLSTACK then there must be some C in GOALSTACK such that
mode(C) = (Out , In), ∃c ∈ P such that c is stored at subject(C), and H←. = c. But,
by Definition 4.3.2 (Traceable, Depositary) and by the fact that every traceable clause
is well-formed, ∀G ∈ GOALSTACK such that mode(G) = (Out , In) and ∀D←. ∈ P
such that D is connected to C, D←. is ground. Then, as a special case, H←. must
also be ground.

Case 2: The clause selected from CLSTACK has a non-empty body.
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When the clause selected from CLSTACK has a non-empty body, a fact can be added to
FACTSTACK only be the means of the bottom-up evaluation in Phase 2 of the algorithm. Let
c : H ←− B be a clause selected from CLSTACK.

1. mode(H) ∈ {(In, In), (In,Out)}.
In such a case each input position in the head of c is ground because before c was
added to CLSTACK, head(c) was unified with a well-moded atom from GOALSTACK.
By well-modedness of clauses, each variable V in the output position of the head of c,
such that V /∈ VarIn(H), must occur in B. Now, assume that ∃B′ ⊆ FACTSTACK
such that B and B′ unify with mgu θ and that Hθ is not ground. Then, it must be that
∃B ∈ B′ such that B is not ground. But, by the inductive hypothesis, each B ∈ B′ is
ground. This is a contradiction so Hθ must be ground.

2. mode(H) = (Out , In).

If mode(H) = (Out , In), then by Definition 4.3.1 (Well-Formed) Out(H) is ground
and by Definition 4.3.2 (Traceable,Depositary) either In(H) is ground, or In(H) is
a variable and In(H) = In(B1) where B1 is the first atom in B. Now, assume that
∃B′ ⊆ FACTSTACK such that B and B′ unify with mgu θ and that Hθ is not ground.
Then, it must be that ∃B ∈ B′ such that B is not ground. But, by the inductive
hypothesis, each B ∈ B′ is ground. This is a contradiction so Hθ must be ground.

ut
The soundness result is a direct consequence of the construction of the algorithm.

Theorem 4.4.4 (soundness) Let P be a state and FACTSTACK be the result of executing
LIAR on P and a well-moded query. Then ∀A ∈ FACTSTACK, P (P) |= A.

Proof. It is easy to see that, by construction, if an atom A is added to FACTSTACK, then
CLSTACK |= A. Since ∀c ∈ CLSTACK c is an instance of a clause c′ ∈ P (P), it follows that
P (P) |= A. ut

The following completeness result guarantees that, after executing LIAR on a state P
and some well-moded query, for any goal A ∈ GOALSTACK it holds that if there exists a

successful SLD derivation of A in P (P) with c.a.s. θ then A
θ
↪→ FACTSTACK.

Theorem 4.4.5 (completeness) Let P be a state and FACTSTACK,GOALSTACK be the re-
sult of executing LIAR on P and a given well-moded goal.

Then ∀C ∈ GOALSTACK, if ∃ a successful SLD derivation δ : C θ−→P (P) � then C
θ
↪→

FACTSTACK.

Proof. We prove a more general proposition:

Proposition 4.4.6 Let P be a state and let FACTSTACK,GOALSTACK be the result of exe-
cuting LIAR on P and a given well-moded goal. Then ∀C ∈ GOALSTACK:

1. if mode(C) = (In,Out) or mode(C) = (In, In) and ∃ successful SLD derivation

δ : C θ−→P (P) � then C
θ
↪→ FACTSTACK,

2. if mode(C) = (Out, In) and ∃ successful SLD derivation D θ−→P (P) �, where D is

an atom connected to C then D
θ
↪→ FACTSTACK.
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Proof. The proof proceeds by induction on the length of the derivation.
Base case: length = 1.

1. Assume that δ : C θ−→P (P) � has length 1. In such a case there exists a clause c :
C ′←. ∈ P such that mgu(C,C ′) = θ. Note that mode(C) ∈ {(In,Out), (In, In)}.
This means that clause c is stored at issuer(C) (the mode is assigned to the predicate
symbol and this is the same for C and C ′).

Since C ∈ GOALSTACK then:

(a) first, at some point in Phase 1 of the algorithm (lines 17-22), clause c was fetched
at issuer(C ′) and (C ′←.)θ was added to CLSTACK;

(b) then, at some point in Phase 2 of the algorithm (lines 33-35), C ′θ was added to
FACTSTACK.

Since mgu(C,C ′) = θ the proposition follows.

2. Assume that δ : D θ−→P (P) � has length 1. Then there exists a clause d : D′←. ∈ P
such that mgu(D,D′) = θ. Note that since D is a well-moded goal, subject(D) =
subject(D′) and because all clauses are assumed to be well-formed then issuer(D′)
is ground and it holds that issuer(D′) = issuer(D). Since D is connected to C,
mode(D) = (Out, In) and d is stored at subject(C) = subject(D). Consequently,
since C ∈ GOALSTACK:

(a) at some point in Phase 1 of the algorithm (lines 23-29) clause d was fetched at
subject(D′) and added to CLSTACK;

(b) then, at some point in Phase 2 (lines 33-35), D′ was added to FACTSTACK.

Since mgu(D,D′) = θ the proposition follows.

Inductive case:

1. Assume that there exists an SLD derivation δ : C θ−→P (P) �, such that length(δ) =
m > 1. Then, by the variant corollary [9], there exists a clause c : H ←− B1, . . . , Bn
and substitutions γ0, γ1, . . . , γn such that:

• γ0 = mgu(C,H),

• ∀i ∈ [1, n] there exists a successful derivation δi : Biγ0 · · · γi−1
γi−→P (P) �

such that length(δi) < m with c.a.s. γi,
• Cθ is a variant of Hγ0γ1 · · · γn.

Since mode(C) ∈ {(In,Out), (In, In)} then clause c is stored at issuer(C), and,
since C ∈ GOALSTACK at some step in Phase 1 of the algorithm (lines 17-22), c is
fetched at issuer(C) and cγ0 is added to CLSTACK. We need to prove the following
claim:

Claim 1 For each i ∈ [1, n], (B1, . . . , Bi)γ0
γ1···γi
↪→ FACTSTACK.

Proof of Claim 1. The proof is by induction on i:
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• Basic case: i = 1.
Because clause c is well-moded, B1γ0 is well-moded. Since B1γ0

γ1−→P (P) �
is a derivation of length < m, by inductive hypothesis on the length of the
derivation, B1γ0

γ1
↪→ FACTSTACK.

• Inductive case:
Assume (B1, . . . , Bi−1)γ0

γ1···γi−1
↪→ FACTSTACK. By Corollary 4.2.5,

Biγ0γ1 · · · γi−1 is well-moded. Since Biγ0γ1 · · · γi−1
γi−→P (P) � is a deriva-

tion of length < m then, by inductive hypothesis on the length of the derivation,
Biγ0γ1 · · · γi−1

γi
↪→ FACTSTACK.

Now, by Corollary 4.2.4, Biγ0, . . . , γi is ground. By composing the substitu-
tions, (B1, . . . , Bi)γ0

γ1···γi
↪→ FACTSTACK, so that the claim follows. ut

From Claim 1 it follows that, at some point of Phase 2 of the algorithm (lines 33-35),
Hγ0γ1 · · · γn was added to FACTSTACK. Since γ0 = mgu(C,H), it follows that

C
θ
↪→ FACTSTACK, where θ = γ0γ1 · · · γn.

2. Assume that there exists a successful SLD derivation δ : D θ−→P (P) �, such that
length(δ) = m > 1. Then, by the variant corollary [9], there exists a clause c :
H ←− B1, . . . , Bn and substitutions γ0, γ1, . . . , γn such that:

• γ0 = mgu(D,H),

• ∀i ∈ [1, n] there exists a successful derivation δi : Biγ0 · · · γi−1
γi−→P (P) �

such that length(δi) < m with c.a.s. γi,
• Dθ is a variant of Hγ0γ1 · · · γn.

Since mode(D) = (Out, In) then either:

(2a) In(H) contains a ground term a and c is stored at a, or
(2b) In(H) is a variable. In such a case, there exists a prefixB1, . . . , Bk ofB1, . . . , Bn

satisfying the conditions of Definition 4.3.2, and c is stored at issuer(Bk) =
Out(Bk).

Case 2a.

Since C ∈ GOALSTACK and subject(C) = subject(H) = subject(D) then, at some
point of Phase 1 of the algorithm (lines 23-29), c is fetched at subject(C) and added to
CLSTACK. We need to prove the following claim:

Claim 2 For each i ∈ [1, n], (B1, . . . , Bi)γ0
γ1···γi
↪→ FACTSTACK.

Proof of Claim 2. The proof is by induction on i:

• Basic case: i = 1.
Because c is well-moded, by Lemma 4.2.3, B1γ0 is also well-moded. Since
B1γ0

γ1−→P (P) � is a derivation of length < m, by inductive hypothesis on the

length of the derivation, B1γ0
γ1
↪→ FACTSTACK.
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• Inductive case:
Assume (B1, . . . , Bi−1)γ0

γ1···γi−1
↪→ FACTSTACK. By Corollary 4.2.5,

Biγ0γ1 · · · γi−1 is well-moded. SinceBiγ0γ1 · · · γi−1
γi−→P (P) � is a derivation

of length < m then, by inductive hypothesis on the length of the derivation,
Biγ0γ1 · · · γi−1

γi
↪→ FACTSTACK.

By composing the substitutions, (B1, . . . , Bi)γ0
γ1···γi
↪→ FACTSTACK, so that the

claim follows. ut

Now, from Claim 2 and the fact that c ∈ P , it follows that, at some point in Phase 2
of the algorithm (lines 33-35), Hγ0γ1 · · · γn was added to FACTSTACK. Since γ0 =

mgu(D,H), it follows that D
θ
↪→ FACTSTACK, where θ = γ0γ1 · · · γn. ut

Case 2b.

We first prove the following claim:

Claim 3 For i ∈ [1, k], (B1, . . . , Bi)γ0
γ1···γi
↪→ FACTSTACK.

Proof of Claim 3. In the proof of Claim 3 we also show that (B1, . . . , Bk)γ0
γ1···γk
↪→

FACTSTACK implies that, at some point, the algorithm fetches clause c from its de-
positary and adds it to CLSTACK. The proof is by induction on i:

• Basic case: i = 1.
By Lemma 4.2.3, B1γ0 is well-moded. Also mode(B1) = (Out, In), and
subject(B1) = subject(C) = subject(D) and is ground. SinceC ∈ GOALSTACK,
and since B1γ0

γ1−→P (P) � is a derivation of length < m, by inductive hypoth-

esis on the length of the derivation, B1γ0
γ1
↪→ FACTSTACK. Since B1γ0

γ1
↪→

FACTSTACK then at some point in Phase 2 of the algorithm (lines 36-40) the
following dummy clause is added to CLSTACK:

dm : dummy(X, issuer(B1γ0γ1)) :- dummy(X, issuer(B1γ0γ1)).

Then, at some point in Phase 1 of the algorithm (lines 9-16), dm was selected
from CLSTACK and dummy(X, issuer(B1γ0γ1)) was added to GOALSTACK.
Because mode(dummy) = (Out , In), in lines 23-29 all clauses moded (Out , In)
were fetched from issuer(B1γ0γ1). But, by Definition 4.3.2, issuer(B1γ0γ1) is
the depositary of clause c, so also clause c was fetched and added to CLSTACK.

• Inductive case:
Assume (B1, . . . , Bi−1)γ0

γ1···γi−1
↪→ FACTSTACK. By Corollary 4.2.5,

Biγ0γ1 · · · γi−1 is well-moded. Since, by inductive hypothesis on the length of
the derivation,Bi−1γ0 · · · γi−2

γi−1
↪→ FACTSTACK, at some point in Phase 2 of the

algorithm (lines 36-40), the following dummy clause was added to CLSTACK:

dm : dummy(X, issuer(Bi−1γ0 · · · γi−1)):-
dummy(X, issuer(Bi−1γ0 · · · γi−1)).
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Recall that mode(dummy) = (Out, In) (line 39) and that dm is well-moded
(issuer(Bi−1γ0 · · · γi−1) is a ground term). Since, by Definition 4.3.2, for any
i ∈ [1, k − 1], In(Bi+1) = Out(Bi), then Biγ0 · · · γi−1 is connected to
dummy(X, issuer(Bi−1γ0 · · · γi−1)). This implies that at some point in Phase 1
of the algorithm all the clauses moded (Out, In) were fetched at
subject(Biγ0 · · · γi−1) and added to CLSTACK.

Now, since Biγ0γ1 · · · γi−1
γi−→P (P) � is a derivation of length < m then, by

inductive hypothesis on the length of the derivation,
Biγ0γ1 · · · γi−1

γi
↪→ FACTSTACK. By composing the substitutions,

(B1, . . . , Bi)γ0
γ1···γi
↪→ FACTSTACK, and the claim follows. ut

As an immediate consequence of Claim 3, at some point in Phase 1 of the algorithm
(lines 23-29), all the clauses moded (Out, In) from issuer(Bkγ0 · · · γk) were added
to CLSTACK. In particular, clause c was added to CLSTACK.

For the remaining atoms of the body we prove the following claim.

Claim 4 For i ∈ [k + 1, n], (Bk+1, . . . , Bi)γ0 · · · γk
γk+1···γi
↪→ FACTSTACK.

Proof of Claim 4. The proof is again by induction on i:

• Basic case: i = k + 1.
Notice that Bk+1γ0 · · · γk is well-moded. Since Bk+1γ0 · · · γk

γk+1−→P (P) � is a
derivation of length < m, by inductive hypothesis on the length of the derivation
Bk+1γ0 · · · γk

γk+1
↪→ FACTSTACK.

• Inductive case:
Assume (Bk+1, . . . , Bi−1)γ0 · · · γk

γk+1···γi−1
↪→ FACTSTACK. Notice again that,

by Corollary 4.2.4, Biγ0 · · · γkγk+1 · · · γi−1 is well-moded. Since
Biγ0 · · · γkγk+1 · · · γi−1

γi−→P (P) � is a derivation of length < m then, by
inductive hypothesis on the length of the derivation,
Biγ0 · · · γk · · · γi−1

γi
↪→ FACTSTACK. By composing the substitutions,

(Bk+1, . . . , Bi)γ0 · · · γk
γk+1···γi
↪→ FACTSTACK, so that the claim follows. ut

From Claim 3 and Claim 4 it follows that for i ∈ [1, n] (B1, . . . , Bi)γ0
γ1···γi
↪→

FACTSTACK. From this and from the fact that c ∈ P it follows that at some point in
Phase 1 of the algorithm (lines 33-35), Hγ0γ1 · · · γn was added to FACTSTACK. Since

γ0 = mgu(D,H), it follows that D
θ
↪→ FACTSTACK, where θ = γ0γ1 · · · γn. ut

By observing that each well-moded atom having mode (Out , In) is connected to itself then
the completeness result is an immediate consequence of Proposition 4.4.6. ut

4.5 Core TuLiP vs. RT0

In this section we compare Core TuLiP with RT0 and we show show that Core TuLiP is at
least as expressive as RT0. The RT family is presented in Chapter 2. In order to simplify
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RT0 Storage Type Core TuLiP Mode
issuer-traces-all (In,Out)
issuer-traces-def (In, In)
subject-traces-all (Out , In)

Table 4.3: RT0 storage types and Core TuLiP modes

the presentation we assume that each role has just one of the following three type values:
issuer-traces-all (ITA), issuer-traces-def (ITD), and subject-traces-all (STA). To extend the
results presented in this section to the full version (i.e. including all possible combinations of
RT0 types), in Chapter 6 we extend Core TuLiP by allowing predicates with multiple modes.

4.5.1 Translating RT0 into Core TuLiP

In this section we demonstrate that Core TuLiP is at least as expressive as RT0 by showing
that an arbitrary RT0 policy can be translated into an equivalent Core TuLiP state (in Core
TuLiP a state is an equivalent of a distributed RT0 policy). First, we define a mapping T
from RT0 to Core TuLiP.

Definition 4.5.1 Let c be an RT0 credential. Then T (c) is defined as follows
(ITA = issuer-traces-all):

T (a.r ←− d) = r(a, d).
T (a.r ←− b.r1) = r(a,X) :− r1(b,X).

T (a.r ←− a.r1.r2) =
{
r(a,X) :− r2(Y,X), r1(a, Y ). if type(r1) 6= ITA,
r(a,X) :− r1(a, Y ), r2(Y,X). otherwise.

T (a.r ←− b1.r1 ∩ b2.r2) =
{
r(a,X) :− r2(b2, X), r1(b1, X). if type(r1) 6= ITA,
r(a,X) :− r1(b1, X), r2(b2, X). otherwise.

Concerning the mode of the predicates, Table 4.3 shows an RT0 storage type and the corre-
sponding Core TuLiP mode. ut

Recall that in order to preserve the well-modedness of a credential, sometimes we need to
change the order of the atoms in the body of a credential. We observed this already in
Example 4.3. For the same reason, in Definition 4.5.1, we have to change the order of the
atoms in the body of a credential when storage type is other than issuer-traces-all. The
following theorem shows that, from the view point of the declarative semantics, S and T (S)
are equivalent (recall thatm is the fixed predicate symbol used in SP(S): because we directly
compare Core TuLiP with RT0, here we use the original notation with the m/3 predicate
symbol to specify the semantics of RT0).

Theorem 4.5.2 Let S be an RT0 policy. Then SP(S) |= m(a, r, d) iff T (S) |= r(a, d).

Proof. Take an RT statement a.r ←− d. The meaning of this statement is given by the clause
SP(a.r ←− d) = m(a, r, d) (see Chapter 2, Section 2.2.2). The Core TuLiP equivalent of
this statement is given by T (a.r ←− d) = r(a, d). Generalising this, we now define a
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mapping sp_to_tulip which transforms atoms of the form m(x, y, z) into atoms of the form
y(x, z) (the mapping is extended to clauses and programs in a natural way). Now if (1) m/3
is the only predicate symbol defined in program P , and if (2) each second argument of each
atom occurring in P is ground, then sp_to_tulip is only a syntactic mapping, and that for
each ground atom A, we have that P |= A iff sp_to_tulip(P ) |= sp_to_tulip(A). Now, since
for any SP(S) we have that (1) and (2) are both satisfied, and since sp_to_tulip(SP(S)) =
T (S), the thesis follows (see also Fig. 4.1). ut

S
T - T (S)

SP (S)

SP

? eqv.
MT (S)

Semantics

?

(a){
a.r ←− b.s
b.s ←− d

}
T -

{
r(a,X) ←− s(b,X).
s(b, d).

}

{
m(a, r, d)
m(b, s, d)

}SP
?

eqv.
{
r(a, d)
s(b, d)

}Semantics
?

(b)

Fig. 4.1: Commutating diagrams illustrating Theorem 4.5.2

Figure 4.1(a) shows the commutating diagram illustrating Theorem 4.5.2 while Fig. 4.1(b)
shows an instance of the diagram presented in Fig. 4.1a for a concrete RT0 policy. In Fig.
4.1(a), MT (S) denotes the (minimal Herbrand) model of program T (S).
Theorem 4.5.2 shows that each RT0 policy can be translated into a declaratively equivalent
Core TuLiP state. Now, to prove the full equivalence we still have to prove two things: that
(a) if an RT0 credential is stored at entity a then the corresponding Core TuLiP statement
is stored at a as well, and that (b) the Core TuLiP system is capable of answering the same
queries the RT0 system can.

Proposition 4.5.3 Let c be an RT0 credential.

(a) If c is stored at a then T (c) is also stored at a.

(b) If c is a well-typed then T (c) is traceable.

Proof. (a) This is a direct consequence of Definition 4.5.1 and Definition 4.3.2. Concerning
(b), Table 4.4 shows all possible well typed RT0 credentials, their Core TuLiP counterparts,
and the corresponding modes. Using Definition 4.3.2 one can check that for each well typed
RT0 credential shown in Table 4.4 the corresponding Core TuLiP clause is traceable. ut

Finally, we have to show how RT0 goals can be transformed into (legal, i.e. well-moded)
Core TuLiP queries.
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RT0 credential (c)

Possible types for
r, r1, and r2 such
that the credential

is well typed

Translation to Core TuLiP (T (c)) Modes

r r1 r2 r r1 r2

a.r ←− d ITA r(a, d). (I,O)
STA r(a, d). (O,I)
ITD r(a, d). (I,I)

a.r ←− b.r1 ITA ITA r(a,X) :− r1(b,X). (I,O) (I,O)
STA STA r(a,X) :− r1(b,X). (O,I) (O,I)
ITD ITA r(a,X) :− r1(b,X). (I,I) (I,O)
ITD ITD r(a,X) :− r1(b,X). (I,I) (I,I)
ITD STA r(a,X) :− r1(b,X). (I,I) (O,I)

a.r ←− a.r1.r2 ITA ITA ITA r(a,X) :− r1(a, Y ), r2(Y,X). (I,O) (I,O) (I,O)
STA STA STA r(a,X) :− r2(Y,X), r1(a, Y ). (O,I) (O,I) (O,I)
ITD ITA ITA r(a,X) :− r1(a, Y ), r2(Y,X). (I,I) (I,O) (I,O)
ITD ITA ITD r(a,X) :− r1(a, Y ), r2(Y,X). (I,I) (I,O) (I,I)
ITD ITA STA r(a,X) :− r1(a, Y ), r2(Y,X). (I,I) (I,O) (O,I)
ITD ITD STA r(a,X) :− r2(Y,X), r1(a, Y ). (I,I) (I,I) (O,I)
ITD STA STA r(a,X) :− r2(Y,X), r1(a, Y ). (I,I) (O,I) (O,I)

a.r ←− b1.r1 ITA ITA ITA r(a,X) :− r1(b1, X), r2(b2, X). (I,O) (I,O) (I,O)
∩ b2.r2 ITA ITA ITD r(a,X) :− r1(b1, X), r2(b2, X). (I,O) (I,O) (I,I)

ITA ITA STA r(a,X) :− r1(b1, X), r2(b2, X). (I,O) (I,O) (O,I)
ITA ITD ITA r(a,X) :− r2(b2, X), r1(b1, X). (I,O) (I,I) (I,O)
ITA STA ITA r(a,X) :− r2(b2, X), r1(b1, X). (I,O) (O,I) (I,O)
STA STA STA r(a,X) :− r2(b2, X), r1(b1, X). (O,I) (O,I) (O,I)
STA STA ITA r(a,X) :− r2(b2, X), r1(b1, X). (O,I) (O,I) (I,O)
STA STA ITD r(a,X) :− r2(b2, X), r1(b1, X). (O,I) (O,I) (I,I)
STA ITA STA r(a,X) :− r1(b1, X), r2(b2, X). (O,I) (I,O) (O,I)
STA ITD STA r(a,X) :− r2(b2, X), r1(b1, X). (O,I) (I,I) (O,I)
ITD ITA ITA r(a,X) :− r1(b1, X), r2(b2, X). (I,I) (I,O) (I,O)
ITD ITA ITD r(a,X) :− r1(b1, X), r2(b2, X). (I,I) (I,O) (I,I)
ITD ITA STA r(a,X) :− r1(b1, X), r2(b2, X). (I,I) (I,O) (O,I)
ITD ITD ITA r(a,X) :− r2(b2, X), r1(b1, X). (I,I) (I,I) (I,O)
ITD STA ITA r(a,X) :− r2(b2, X), r1(b1, X). (I,I) (O,I) (I,O)
ITD STA STA r(a,X) :− r2(b2, X), r1(b1, X). (I,I) (O,I) (O,I)
ITD STA ITA r(a,X) :− r2(b2, X), r1(b1, X). (I,I) (O,I) (I,O)
ITD STA ITD r(a,X) :− r2(b2, X), r1(b1, X). (I,I) (O,I) (I,I)
ITD ITD STA r(a,X) :− r2(b2, X), r1(b1, X). (I,I) (I,I) (O,I)
ITD ITD ITD r(a,X) :− r2(b2, X), r1(b1, X). (I,I) (I,I) (I,I)

Table 4.4: Well typed RT0 credentials and the corresponding Core TuLiP traceable clauses their
modes (I=In, O=Out)
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Translating RT0 goals Let S be a well-typed RT0 policy and T (S) its Core TuLiP equiv-
alent. Let us consider the different sorts of goals supported by RT0 (refer also to Chapter 2,
Section 2.3).

Sort 1: the goal of this sort is “given a.r and b, check if b is a member of [[a.r]]SP(S)”.
Semantically, answering a goal of this sort is equivalent to checking if SP(S) |= m(a, r, b).
In Core TuLiP, this goal is translated into the query r(a, b), which, being ground, is well-
moded. Therefore, by Theorem 4.5.2, we have that SP(S) |= m(a, r, b) iff T (S) |= r(a, b)
which means that goals of Sort 1 can be expressed in Core TuLiP.

Sort 2: the goal of this sort is “given a.r, list all principals in [[a.r]]SP(S)”. Semantically,
answering a goal of this sort is equivalent to finding all instances of X such that SP(S) |=
m(a, r,X). This goal can be answered in RT0 only if role r has type issuer-traces-all.
The Core TuLiP translation of this goal is the query r(a,X), which is well-moded. This is
because, the mode of r in T (S) is (In,Out). Therefore, by Theorem 4.5.2, we have that
SP(S) |= m(a, r,X) iff T (S) |= r(a,X) which means that goals of Sort 2 can be expressed
in Core TuLiP.

Sort 3: the goal of this sort is “given b, list all a.r such that b is a member of [[a.r]]SP(S)”.
Semantically, answering a goal of this sort is equivalent to finding all instances of X and
Y such that SP(S) |= m(X,Y, b). In Core TuLiP, we decided not to support this sort of
a goal. A goal of Sort 3 can be answered only for the subject traceable role, which means
that, in general, a goal of Sort 3 cannot be answered completely. For this reason, we do not
distinguish a goal of Sort 3 as a valid goal in Core TuLiP. In RT0, a goal of Sort 3 is also not
used on its own, but only as a subgoal in the goals of Sort 1. Formally eliminating goals of
Sort 3 from Core TuLiP lets us to keep the syntax manageable (to express goals of this sort
we would need a “polymorphic” mode system in which the actual mode of an atom does not
only depend on its predicate symbol but also on some of its arguments). Actually, our LIAR
algorithm would be able to answer such goals as well.

Summarising, Theorem 4.5.2 and Proposition 4.5.3 allow us to say that Core TuLiP is at
least as expressive as RT0 (with the restriction of the goals of Sort 3 which are not supported
in Core TuLiP - see Section 4.5.1 for details).

4.6 Related Work

We present the related work on Trust Management in Chapter 2. In most of the approaches
reported in Chapter 2 [25, 27, 44, 87], it is assumed that all required credentials can be found
when needed - the problem of the distributed storage thus is not considered. The exception is
RT which provides a type system to deal with the problem of distributed storage. In Sect. 4.5
we compare the type system of RT0 with our approach to the credential discovery problem.

From other approaches not mentioned in Chapter 2, Li, Grosof, and Feigenbaum [64]
develop a logic-based language, called Delegation Logic (DL), to represent policies, creden-
tials, and requests for distributed authorisations. The monotonic version of Delegation Logic
– called D1LP – is based on Logic Programming language Datalog. D1LP extends Datalog
with constructs that allow specification of the delegation depth and a wide variety of com-
plex principals. Similarly to the approaches mentioned above, Delegation Logic does not
deal with distributed storage of credentials.

Bertino et al. [22] introduce an XML-based trust negotiation language X -TNL used
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for expressing credentials and disclosure policies in the Trust-X system. Though Trust-X
policies are formalised using logic rules, it also does not directly support credential discovery.

PeerTrust [74] is a Trust Negotiation language where the problem of the distributed stor-
age is also taken into account. PeerTrust is based on first order Horn clauses of the form
lit0 ←− lit1, . . . , litn, where each liti is a positive literal. PeerTrust supports distributed
storage by allowing each literal in a rule to have an additional Issuer argument: liti @ Issuer.
The Issuer is the peer responsible for evaluating liti. Even though the Issuer argument indi-
cates who is responsible for evaluating the credential, the Issuer argument does not say where
a particular credential should be stored. This means that PeerTrust makes a silent assumption
about the credentials being stored in such a way that Issuer can find the proof, but PeerTrust
gives no clue of how this should be done.

PeerAccess [102] addresses the problem of distributed credential discovery in a slightly
different way. In PeerAccess, if an entity needs to establish the truth value of a formula, and
is unable to do so on her own, she can ask other entities in the system for help. PeerAccess
employs so called proof hints to restrict the number of entities that should be contacted for
missing information. This approach gives flexibility (one may use proof hints to build a more
modular version of the storage type system), but on the other hand, choosing the right strategy
may require the use of an external reputation service. In contrast to PeerTrust, PeerAccess is
purely a theoretical system, which means that there is no working implementation available.

The well-known eXtensible Access Control Markup Language (XACML) [77] supports
distributed policies and also provides a profile for role based access control (RBAC). How-
ever, in XACML, it is the responsibility of the Policy Decision Point (PDP) – an entity han-
dling access requests – to know where to look for the missing attribute values in the request.

4.7 Conclusions
In this chapter we introduce Core TuLiP, a trust management language based on Logic Pro-
gramming. Core TuLiP forms the basis for the TuLiP trust management language which
includes user-defined constraints and shares most features of moded logic programs, includ-
ing practical features, such as interfacing with other languages, debugging facilities, etc.

Core TuLiP has all the advantages of trust management languages: for instance, a state-
ment may be issued by one authority and it may be stored by an authority different from the
issuing one. To deal with the problem of finding a credential when it is needed for a proof,
we define the notion of a traceable credential and present a Lookup and Inference AlgoRithm
(LIAR), which we show to be sound and complete w.r.t. the standard declarative semantics.
We also compare Core TuLiP with RT0 and show that each RT0 credential and goal translates
into Core TuLiP equivalent (with the small, but as we have argued permissible, exception of
the goals of Sort 3).

The most important theoretical contribution of this chapter is that we show that it is
possible to define a true TM language without leaving the well-established LP formalism.
The practical relevance lies in the greater flexibility, extensibility and accessibility that an LP
language enjoys with respect to – for instance – RT. As we have discussed, to accommodate
various needs, the language RT0 has developed a relatively large number of extensions, which
make the language less flexible and harder to learn and understand. We thought that this was



90 Chapter 4. Core TuLiP – Logic Programming for Trust Management

the price we had to pay to have a true TM language, but Core TuLiP shows that this can be
done otherwise.



CHAPTER 5

Trust Management in
P2P systems using
Standard TuLiP

In Chapter 4 we introduce Core TuLiP - the theoretical foundations of TuLiP - a Trust man-
agement Language based on Logic Programming.

Having a good theory, however, does not yet guarantee that this theory can be successfully
implemented and used in practice. Therefore, in this chapter we investigate practical issues
that must be solved when deploying Core TuLiP. We present a concrete version of Core
TuLiP which is a trust management system consisting of a trust management language based
on Core TuLiP, the description of necessary system components and the specification for the
required underlying infrastructure. We call our system Standard TuLiP.

The contents of this chapter was first published as M. R. Czenko, J. M. Doumen, and S.
Etalle. Trust Management in P2P Systems Using Standard TuLiP. In Proceedings of IFIPTM
2008: Joint iTrust and PST Conferences on Privacy, Trust Management and Security, Trond-
heim, Norway, volume 263/2008 of IFIP International Federation for Information Processing,
pages 1-16, Boston, May 2008. Springer.
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5.1 Introduction

Standard TuLiP is based on the theoretical foundation laid by Core TuLiP (Chapter 4) i.e.
on the same concept of a credential storage system and on a similar decision algorithm. But
while Core TuLiP is more or less a theoretical exercise based on a restricted syntax, Standard
TuLiP is a full fledged trust management system with not only a more flexible syntax, but
with the support of a whole distributed infrastructure, with APIs for the specification, the
validation and the storage of the credentials, APIs for interrogating the decision procedure
and a number of changes w.r.t. Core TuLiP which makes Standard TuLiP amenable for a
practical deployment (to mention one, the choice of including the mode in the credential
specification, which allows to reduce the workload of the lookup algorithm). Having acquired
the practical experience from the deployment of Standard TuLiP, in Chapter 6 we present the
full version of TuLiP where we extend the expressive power of the language further and
where we formalise the crucial implementation related concepts introduced informally in
this chapter.

The chapter is structured as follows. Section 5.2 introduces the XML syntax of Standard
TuLiP credentials and policies and shows how they are represented in the logic programming
form. In Section 5.3 we present the architecture of Standard TuLiP. We introduce basic
components, show their functionality and also state how they communicate with each other.
In particular we show how credentials are stored and how we find them. Then, in Sect.
5.4 we show the system from the user perspective: we answer questions like how to write
credentials, send queries, and we also discuss the problem of credential and user identifier
revocation. In Sect. 5.5 we give additional insight into our concrete implementation of a
distributed P2P content sharing system and which design choices we had to consider during
our work. We finish the chapter with Related Work in Sect. 5.6 and Conclusions and Future
Work in Sect. 5.7.

5.2 Policies

Standard TuLiP is a credential-based, role-based trust management system. Recall that, in-
formally speaking, a credential is a signed statement determining which role can be assigned
to an entity. A role can then be further associated with permissions, capabilities, or actions to
be performed. For example, the University of Twente may issue a credential saying that Alice
is a student of the University of Twente, which directly or indirectly may give Alice a certain
set of permissions (like buying a book in an online store at a discount price). Here, the Uni-
versity of Twente is the issuer of the credential, Alice is the credential subject, and student is
the role name. In Standard TuLiP, a credential is always signed by the credential issuer, as it
is the issuer who has the authority of associating certain rights with the subject. A Standard
TuLiP credential can also contain additional information about the issuer and/or the subject.
For instance, a student usually has a student number, she belongs to a certain department,
etc. This information is stored in the properties section of a credential. Standard TuLiP uses
XML [97] as the language for the credential representation. The use of XML is convenient
for several reasons. First, XML is a widely accepted medium for electronic data exchange
and is widely supported by many commercial and free tools. Second, the use of XML names-
paces [98] can help in avoiding name conflicts in the markup and facilitates the definition of
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Listing 5.1: A basic Standard TuLiP XML credential for:
student_oi(ut-pub-key,alice-pub-key,[studentid:0176453,department:ewi,study:cs])

<?xml version="1.0" encoding="UTF−8"?>
2 <credential xmlns="urn:ewi:namespaces:tulip"

notBefore="2007−02−12T20:00:00" notAfter="2008−02−12T20:00:00">
4 <permission>

<rolename>student</rolename>
6 <mode>oi</mode>

<issuer><entityID>ut−pub−key</entityID></issuer>
8 <subject><entityID>alice−pub−key</entityID></subject>

<properties>
10 <studentid>0176453</studentid>

<department>ewi</department>
12 <study>cs</study>

</properties>
14 </permission>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
16 <SignedInfo>

. . .
18 <Reference URI="">

. . .
20 <DigestValue>5WlwStu5ouu94nb5rwQ6BhFOPWc=</DigestValue>

</Reference>
22 <SignedInfo>

<SignatureValue>signature−value</SignatureValue>
24 </Signature>

</credential>

common vocabulary (recall that we have a separate namespace for user identifiers and role
names).

We distinguish two types of credential: the basic credential, and the conditional creden-
tial. The basic credential is just a direct role assignment (e.g. “Alice is a student”), while the
conditional credential can express role assignments under some constraints.

Basic credentials. Figure 5.1 shows the XML encoding of a basic Standard TuLiP cre-
dential (in the caption of Fig. 5.1, the second line shows the logic programming represen-
tation of the credential introduced later in this section - see Definition 5.2.1). The top level
XML element is credential. The credential XML element, in turn, contains one permission
XML element, which consists of the following XML elements: role name, mode, issuer,
subject, and optionally properties. As in Core TuLiP (see Chapter 4), the mode indicates
the storage location of the credential. Here we use a notation which is easier to parse (the
mode of an argument is simply given by the index of the argument position), and we have
i = In , o = Out , and so oi = (Out , In). The issuer element consists of a single enti-
tyID element which contains a public identifier of the credential issuer. Similarly, the subject
element contains the entityID element containing the public identifier of the subject. The
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optional properties XML element can include arbitrary XML content describing additional
properties of the issuer and/or the subject. Every credential includes the time period in which
it is considered valid - this is expressed by the XML attributes notBefore and notAfter that
are inside the top-level credential XML element. The credential is signed by the private key
belonging to the credential issuer. Standard TuLiP uses public (RSA) keys as public iden-
tifiers. By doing this, every credential can be immediately validated without the need for
an external PKI infrastructure (see also Sect. 5.3 for more information on the requirements
Standard TuLiP have on the underlying infrastructure). This is because the public key needed
to verify the signature on the credential is already present in the issuer element embedded in
the permission element of the credential. The signature is contained in the Signature XML
element. We use the enveloped XML signature format [96] (more precisely, a digest value
is computed over the top-level element, which is then included in the DigestValue element
of the SignedInfo element of the signature, and then the signature is made of the SignedInfo
element and included in the SignatureValue element). The xmlns attribute in the top-level
credential XML element contains the namespace identifier urn:ewi:namespaces:tulip. This
is required for every valid Standard TuLiP credential. By using namespaces, Standard TuLiP
credentials can be distinguished from other credential formats and this even allows for dif-
ferent credential formats to be mixed in a single XML document.

Conditional credentials. Basic credentials are insufficient to model more sophisticated
statements, for instance including delegation. Consider an online store which gives a discount
to a student of the University of Twente. Instead of giving each student a basic credential
granting the discount, it is more efficient to associate the discount role to everyone who has
the student role at the University of Twente. In order to express this kind of statement we
need a conditional credential.

Listing 5.2: A conditional Standard TuLiP XML credential for:
discount_ii(eStore-pub-key,X,Y)←− student_oi(ut-pub-key,X,Y)

<?xml version="1.0" encoding="UTF−8"?>
2 <credential xmlns="urn:ut:ewi:namespaces:tulip"

notBefore="2007−02−12T20:00:00" notAfter="2008−02−12T20:00:00">
4 <permission>

<rolename>discount</rolename>
6 <mode>ii</mode>

<issuer><entityID>eStore−pub−key</entityID></issuer>
8 <subject><var>X</var></subject>

<properties><var>Y</var></properties>
10 </permission>

<provided>
12 <condition>

<rolename>student</rolename>
14 <mode>oi</mode>

<issuer><entityID>ut−pub−key</entityID></issuer>
16 <subject><var>X</var></subject>

<properties><var>Y</var></properties>
18 </condition>

</provided>
20 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
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. . .
22 </Signature>

</credential>

A conditional credential consists of one permission XML element followed by one pro-
vided XML element (Fig. 5.2). The permission element has the same structure as the per-
mission element in the basic credential. The provided XML element includes one or more
condition elements, each of which specifies an additional condition that must be satisfied
before the specified role name can be associated with the credential subject. A condition
XML element is similar to the permission XML element in that it also contains the XML
elements role name, mode, issuer, subject and optional properties. In conditional credential
a variable can be used to make a logical link between two or more XML elements occurring
in the credential. The only exception is the issuer of a credential (the issuer element inside
the permission element) that must not contain a variable as the issuer of a credential must
always be known (otherwise it would not be possible to verify the signature on a credential).

Figure 5.2 shows the credential expressing the following statement: eStore associates the
discount role name to all students of the University of Twente (ut) (for conciseness we omit
the contents of the signature XML element). The subject XML element inside the permission
XML element contains variable X , which links this element with the subject XML element
inside the condition XML element in the provided part of the credential. This means that
eStore assigns the discount role name to every entity X for which the condition is satisfied,
i.e. to every student of the University of Twente. Similarly, the properties element inside the
permission element contains variable Y which is then used in the properties element inside
the condition element in the provided part of the credential. This means that when discount
is granted, all the properties of a student are included in the discount atom (and then used
e.g. for logging). To prove that Alice is eligible for a discount at eStore both the credential
presented in Fig. 5.1 and the credential presented in Fig. 5.2 are needed.

The provided part of a conditional credential can also contain a constraint which in turn
can refer to a built-in function (e.g. in order to manipulate values taken by the variables).
The presence of variables also allows us to interface with external components (e.g. arith-
metic solvers, constraint solvers, programs written in other languages). The only requirement
is that the variables used should respect the input-output flow dictated by the modes in the
credential (the modes are introduced in Chapter 4). In Chapter 6 we show how an exter-
nal evaluation algorithm is used to evaluate user-defined constraints. Interfacing with other
external components is part of the future work.

A Standard TuLiP security policy is defined by a set of credentials, i.e. a set of XML
documents.

Queries. When eStore wants to check if Alice is a student of the University of Twente it
sends a query to the University of Twente. In Standard TuLiP, a query is also encoded as an
XML document. Figure 5.3 shows an example Standard TuLiP query, in which the issuer
of the query (a user using public key jeroen-pub-key) tests if Alice can have a discount at
eStore and if so retrieves the associated properties (through variable X). The structure of
a Standard TuLiP query is similar to that of the provided part of a Standard TuLiP XML
credential. The top-level element is the query XML element. It consists of a one or more
condition XML elements each of which contains XML elements role name, mode, issuer,
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subject, and optionally the properties.

Listing 5.3: A Standard TuLiP XML query
discount_ii(eStore-pub-key,alice-pub-key,X).

<?xml version="1.0" encoding="UTF−8"?>
2 <query xmlns="urn:ut:ewi:namespaces:tulip"

ID="tulip−ut−ewi−2f72ca8f−25bc−4d50−b1eb−3861e42f1562"
4 IssueInstant="2007−06−29T04:04:38">

<issuer>jeroen−pub−key</issuer>
6 <condition>

<rolename>discount</rolename>
8 <mode>ii</mode>

<issuer><entityID>eStore−pub−key</entityID></issuer>
10 <subject><entityID>alice−pub−key</entityID></subject>

<properties><var>X</var></properties>
12 </condition>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
14 . . .

</Signature>
16 </query>

Besides the query conditions, every query reports the public identifier of the entity mak-
ing the query. Each Standard TuLiP query also contains a unique ID attribute and an Issue-
Instant attribute inside the top-level query XML element. The ID attribute allows the system
to check whether the received response corresponds to the earlier issued query. The IssueIn-
stant attribute carries the time and date of the request which allows the responding entity to
filter out erroneous requests (like the ones with the time in the future), or to check whether
the time matches the validity of a credential used in answering the query. Like a credential,
a query is always signed by the query issuer.

A query is always about a specific set of permissions. However, there are different types
of query. In Chapter 2 we distinguish three different sorts of query in RT0 and Chapter 4 we
show how RT0 queries translate to Core TuLiP queries. We have therefore (we use the RT0

notation of a role from Chapter 2):

Sort 1: “Given two entities a and b, and a role name r, check if b is a member of role a.r.”
This query translates to r_mode(a, b,X) in Standard TuLiP where mode ∈ {ii, io, oi} and X
will be instantiated with the properties assigned to the subject.

Sort 2: “Given an entity a and a role name r, list all members of role a.r.” This query
translates to r_io(a,X,Y) in Standard TuLiP where, for each entity b being a member of role
a.r, X will be instantiated with b and Y with the properties of b.

Sort 3: “Given an entity b find all roles a.r b is a member of.” This query has no equivalent
in Standard TuLiP (see the discussion below).

For the reasons given in Chapter 4, in Standard TuLiP we support only first two sorts.
For instance “Is alice a student of the University of Twente?” and “Give me all the students
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of the University of Twente” are valid queries of Sort 1 and Sort 2 respectively. As in Core
TuLiP, in Standard TuLiP the policy writer can restrict the type of a query one can ask by
using modes (see Chapter 4 for the detailed discussion).

Semantics. The semantics of Standard TuLiP follows the semantics of Core TuLiP in
that each Standard TuLiP credential is given a logic programming representation. In this
representation every credential is represented by a definite clause containing one or more
the so called credential atoms and/or built-in constraints. Unlike Core TuLiP, where each
credential atom has two arguments, in Standard TuLiP, a credential atom has three arguments
to account for the properties.

Definition 5.2.1 (credential atoms,credentials,queries) A credential atom is a predicate of
the form:

rolename_mode(issuer, subject, properties).

A credential is a definite clause of the form P ←− C1, . . . , Cn, where P is a credential
atom, and C1, . . . , Cn are credential atoms or built-in constraints. The credential atom P in
the head of the clause corresponds to the permission XML element and every credential atom
or built-in constraint Ci in the body of the clause corresponds to a condition in the provided
part of the corresponding XML credential encoding. A query is represented by a sequence
of credential atoms and/or built-in constraints C1, . . . , Cn, where each Ci corresponds to a
query condition.

The var XML element maps to a logical variable. We present the actual mapping between
the properties XML element and the corresponding logic programming term in Chapter 6.

Finally, a Standard TuLiP policy is represented by a logic program.

Example 5.1 The credentials presented in Figs. 5.1 and 5.2 and query presented in Fig. 5.3
have the following logic programming representation:

(5.1) student_oi(ut-pub-key, alice-pub-key, [studentid:0176453,department:ewi,study:cs]).
(5.2) discount_ii(eStore-pub-key, X, Y ) ←− student_oi(ut-pub-key, X, Y ).
(5.3) discount_ii(eStore-pub-key, alice-pub-key, X).

Here, [studentid:0176453,department:ewi,study:cs] in credential (5.1) is the Prolog term
corresponding the “properties” XML element.

Recall that given a role name r, the set of all credentials having p as a role name of the
credential atom occurring in the head is called the definition of r. Every credential from the
definition of r is called a defining credential of r.

For sake of conciseness, in the remainder of this chapter we will refer to the logic pro-
gramming representation of a credential instead of using the original XML encoding. For the
same reason, we will sometimes write a credential atom without the last properties argument
if it is clear from the context what is meant.

So far, we have introduced the credentials, the queries and the semantics. Now we need
a system which, given a query, finds the credentials required for the query evaluation and
returns the result of this evaluation to the issuer of the query.
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Fig. 5.1: Components of Standard TuLiP

5.3 System Architecture

In this section we describe the architecture of Standard TuLiP. First, we present the system
components. Then we show how the system components interoperate and we give a concrete
example demonstrating this. Finally, we present the requirements Standard TuLiP has on the
underlying infrastructure. In particular, we discuss how a public identifier can be mapped to
a physical network address.

5.3.1 System Components.

In Standard TuLiP we identify the following components: (a) the LIAR engine, (b) the cre-
dential server (c) the User Client application, and (d) the mode register (see Fig. 5.1).

By default, every system user runs an instance of the LIAR engine, but other approaches
are also possible. For instance, there can be a preselected set of nodes running LIAR, or there
can even be only one instance of LIAR serving a whole community. Because LIAR relies on
unification and – to some extent – on backtracking, the most natural way of implementing
the LIAR algorithm is to reuse an existing Prolog engine. Using Prolog makes deployment
of LIAR easier simultaneously allowing us to preserve the original logic programming for-
malism in the “reasoning” part of the system. We implement LIAR using YAP Prolog [68],
which is a freely available Prolog implementation with several optimisations for better per-
formance. The external network interface is written in Python. LIAR operates as an HTTP
server when answering the queries and as a client when fetching credentials from credential
servers. We give a more detailed functional description of LIAR later in this section.

In Standard TuLiP every user is associated with one credential server. It is possible,
however, that one credential server serves many users. The credential server responds to a
credential request coming from a LIAR engine and returns credentials satisfying this request.
The credential server is implemented as a simple HTTP server (written in Python) and is
internally connected to a credential store, which stores all user’s credentials.
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The User Client is a GUI application (written in Flash and Python) and provides a user-
friendly interface to other Standard TuLiP system components. In particular, the User Client
is used for: generating the user private-public key pair, setting up and maintaining the lo-
cation of the credential server corresponding to the user, importing user credentials, and
querying the Standard TuLiP system. Optionally, an additional application in the form of a
plugin can be provided. For instance, one could provide a plugin having a graphical creden-
tial editor functionality. The User Client application itself does not allow the user to perform
any action on a remote resource. Its main purpose is to let the user query the system.

Another important component of Standard TuLiP is the mode register. The mode register
stores the modes associated with the role names used in the system. Currently, the mode
register is a centralised service operated by the University of Twente. For our initial imple-
mentation, the centralised version of the mode register is sufficient, especially when taking
into account that the mode information is included in each Standard TuLiP credential and
query. It means that mode register is needed mostly when writing credentials in order to
check the consistency of the mode assignment (see also Sect. 5.4). During normal operation,
the mode register is rarely needed. This can happen if the mode register becomes inconsistent
(for instance because of a non-authorised use or a system failure). The mode register may
also be helpful in finding the storage inconsistencies - when we cannot find a credential at
the expected location and the mode information encoded in the credential agrees with that
from the mode register, we know that the problem is in the inconsistent storage and we know
which entity to query. Because storage inconsistencies are not expected to happen often,
making the mode register a centralised service has minimal impact on the performance and
reliability of the whole system. A more hierarchical and distributed approach is also possible
to distribute the ownership of the service and increase reliability and comfort of use (the ser-
vice must be operational, otherwise issuing a new credential may lead to inconsistency in the
credential storage). The mode register is implemented as an HTTP server with user-friendly
web-interface and supports the Security Assertion Markup Language (SAML) protocol [78].

SAML is an XML-based framework for communicating user authentication, entitle-
ment, and attribute information. In Standard TuLiP, each role name is represented by a
SAML assertion [76]. In order to retrieve the modes associated with a given role name we
use a SAML attribute query in which as we pass a role name as the ID of a subject and
urn:ut:ewi:names:tulip:resource:mode as the id of an attribute to be queried. In other words,
a role name is seen as a subject and the associated modes as the values of the “mode” attribute
of this role name. Listing 5.4 shows an example SAML attribute query (here we show a real
request with the real public key and the signature).

Listing 5.4: SAML Attribute Query for the “accredited” role name.

<?xml version="1.0" encoding="UTF−8"?>
2 <AttributeQuery xmlns="urn:oasis:names:tc:SAML:2.0:protocol"

xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
4 xsi:schemaLocation="urn:oasis:names:tc:SAML:2.0:protocol

http://docs.oasis−open.org/security/saml/v2.0/saml−schema−protocol−2.0.xsd"
6 ID="tulip−ut−ewi−0eb10a41−2389−4d63−9677−afbab460142e" Version="2.0"

IssueInstant="2008−08−17T21:13:42" Destination="http://tulip−ut.nl/getMode.php">
8 <Issuer xmlns="urn:oasis:names:tc:SAML:2.0:assertion">

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsgV0HIxl2qoyBrQJMK07
10 IuBUBt9NNqG2158SDphJzuX/ETGrv2F/3mZxPqPL0JLhg55tPZmQoU1EDJ1cz0R9
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d9Z6JiycpKFXYLyDHv1t/Ewahvj2RSD2mBBNDkFw+r+Gn1ocoCRl/PmpSE0U4qet
12 CekRoWdQtzqelmCqHGsY22/V1G9UrnAJIN2YEWjFrKXj+s9bLKMSHuRESNCSxdVL

jM5wGo16maYGY01OUiuhQIX06waW6xYIRJ7jKCjEDEC/YmfNEZc1rctVpWLwgLS2
14 ZcSrK9xIHQZfsxPQYqFji8TrOOLuyjXHQJDj0ebD3xt3XPWzXJO063S+ycFgAhmd

SQIDAQAB
16 </Issuer>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
18 <SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml−exc−c14n#"/>
20 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa−sha1"/>

<Reference URI="">
22 <Transforms>

<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped−signature"/>
24 <Transform Algorithm="http://www.w3.org/2001/10/xml−exc−c14n#"/>

</Transforms>
26 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>B2OVfx53JVy7e1LcOuT8ufrFvrM=</DigestValue>
28 </Reference>

</SignedInfo>
30 <SignatureValue>

aZWZGSCib/WWgYYKyEHA3kuFuwUZerTNSP6DeTw3Yef8v2PD9hhmqxT5+VrTM08f
32 /KI/OnoabE7YG/M8VBJcUVjOY1l7ujyy+7MSqf72pYInpBlnFQ8Zw8fPZxk4XRND

bUm5la2YwsARRCZYv5UlGzzj8d83qXGQgTZKSAqebMgenGCNHFFXU9yRU/GnxJ6j
34 x9k2AO1nS4yx7EkdCLOru4uAlZyqc2F1j3FQvua3Z0oAHAwpjv6JoDromlibogmg

5AFjvBF1N5d60TBbTa1NtQkiRvVp4X3sjFWk7sM5eyI/8k/pEcn/VVuEqBHFchET
36 NkQxRbed5o7xUsZ8SGutRA==</SignatureValue>

</Signature>
38 <Subject xmlns="urn:oasis:names:tc:SAML:2.0:assertion">

<NameID>accredited</NameID>
40 </Subject>

<Attribute xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
42 Name="urn:ut:ewi:names:tulip:resource:mode"/>

</AttributeQuery>

The mode register responds to an SAML attribute query by returning an SAML response
[76] containing one or more assertions. Each returned assertion holds one role name and the
modes associated with this role name. Listing 5.5 shows the SAML response corresponding
to the SAML attribute query shown in Listing 5.4.

Listing 5.5: SAML Assertion corresponding to the query in Listing 5.4

<?xml version="1.0" encoding="UTF−8"?>
2 <Assertion xmlns="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
4 xsi:schemaLocation="urn:oasis:names:tc:SAML:2.0:assertion

http://docs.oasis−open.org/security/saml/v2.0/saml−schema−assertion−2.0.xsd"
6 Version="2.0" ID="tulip−ut−ewi−b35dc804−4b99−a339−e95b−8181ee863830"

IssueInstant="2008−08−17T21:13:45">
8 <Issuer xmlns="urn:oasis:names:tc:SAML:2.0:assertion">

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAthUolTlzjcUy/7cJ3eVf
10 KVH9fved7AROsQRYM6+gJJgigBL/wsex5gr2iCuh/c3PHnAejRZ13eIMqY3Gk7/y
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i8GkTgByxBZALrJWHkHqG96ZaobG5qcGLaaRGzkflgs1EqcnMrsb6TOVfHEiJlhm
12 tZhQsONjDWYZdMRHaalcp1roPxoX+3Ftit4PCj/LNhnsk0aRX5pmHem2a66EROkT

sLm31GRazC6rOmvCwD+TTYiUqEbucyJDLas4OQZfAglD8vLsUR2V5IXelVkLBdfN
14 e1u1EjCk4lHK0QGGNtEGv6YuI9I73exqNpK4F0kd35YPL53SM63D+ab61d74ZGjY

SwIDAQAB
16 </Issuer>

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
18 <ds:SignedInfo>

<ds:CanonicalizationMethod
20 Algorithm="http://www.w3.org/2001/10/xml−exc−c14n#"/>

<ds:SignatureMethod
22 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa−sha1"/>

<ds:Reference>
24 <ds:Transforms>

<ds:Transform
26 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped−signature"/>

<ds:Transform
28 Algorithm="http://www.w3.org/2001/10/xml−exc−c14n#"/>

</ds:Transforms>
30 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<ds:DigestValue>OC/a584DnEAYCGIKNjyD86Ff7oU=</ds:DigestValue>
32 </ds:Reference>

</ds:SignedInfo>
34 <ds:SignatureValue>

Cs4zBEcQDJpzirqC5c1g7uhil03w/J9DvLQROVNZzHU5JmZA+Y+6hQ/we2EjTLNs
36 Kqu90Nr6Bqit+HsrLDZbjIHipyEx+rRCzceENZr2fu5nl59hw/qWHOYLYmAN9LBmnVj

xwSQdZh16k071Vz8vnxIzFPKdZNBJNlkTOX5dCnX9fFhFufSOjymCnpnRigLwe7tzE
38 QQASLf3eg94H5vwbkzpqRF0d6yARdaN0HvBGoWkigLkwXnYd92DeKvuJDo1ZfjCH

5r8+zt4g+3vUEYcsTF6tGK6k8hLY3iLH4gr7hsb6bFQJ6Pz+kPI7GaMiIRzK9PyVc5Ku
40 AVyRhKRgrg==

</ds:SignatureValue>
42 </ds:Signature>

<Subject>
44 <NameID>accredited</NameID>

</Subject>
46 <AttributeStatement>

<Attribute Name="urn:ut:ewi:names:tulip:resource:mode">
48 <AttributeValue>II</AttributeValue>

<AttributeValue>IO</AttributeValue>
50 <AttributeValue>OI</AttributeValue>

</Attribute>
52 </AttributeStatement>

</Assertion>

Currently, the mode register uses the HTTP POST binding to carry the SAML attribute
queries and responses [79]. The mode register uses version 2.0 of the SAML standard.

We expect that an appropriate implementation-level mechanism can be used to guarantee
the confidentiality, integrity, and non-repudiation of the messages being exchange between
the system components. For instance in our proof of concept implementation we support non-
repudiation by using XML signatures while we do not force messages to be encrypted. We
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leave it to the implemention to decide a concrete security technology to be used in different
parts of the system.

5.3.2 LIAR.

The basic functionality of LIAR is to (1) accept a query, (2) find the (possibly negative)
proof for the query (3) when building the proof fetch the required credentials, and (4) return
a response to the user.

When LIAR receives a query (recall that each Standard TuLiP query is an XML docu-
ment) from the User Client it first checks the signature on the query and then LIAR starts the
evaluation process. Every time an additional credential is needed, LIAR fetches the missing
credential from the location indicated by the mode of the credential atom being evaluated.
By embedding the mode information in each credential and in each query, the mode register
does not have to be contacted in order to determine the storage location of the credentials
defining a given role name. The credentials are fetched from the corresponding credential
server by sending a so called credential request. A credential request is an XML document
specifying which credentials should be fetched. Listing 5.6 shows an example of a Standard
TuLiP credential request in which the issuer of the request asks for all the credentials for
which the permission element matches (by logical unification) the permission element in the
request.

Listing 5.6: Example Standard TuLiP Credential Request for each credential whose head unifies with
discount_ii(eStore-pub-key,alice-pub-key,X).

<?xml version="1.0" encoding="UTF−8"?>
2 <credentialRequest xmlns="urn:ut:ewi:namespaces:tulip"

ID="tulip−ut−ewi−1bcfd26b−0c9f−477f−adc9−aa42f9b30aa1"
4 IssueInstant="2007−06−29T04:04:54">

<issuer>jeroen−pub−key</issuer>
6 <permission>

<rolename>discount</rolename>
8 <mode>ii</mode>

<issuer><entityID>eStore−pub−key</entityID></issuer>
10 <subject><entityID>alice−pub−key</entityID></subject>

<properties>
12 <var>X</var>

</properties>
14 </permission>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
16 . . .

</Signature>
18 </credentialRequest>

Besides the permission element that is matched against the permission element of one or
more credentials stored on the credential server, the Standard TuLiP credential request also
specifies the issuer of the request. In Listing 5.6 the issuer of the request is a user using
the public key jeroen-pub-key. If any credential stored at the credential server matches the
permission element of the credential request, such a credential is returned to the issuer of
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the request. LIAR validates each received credential by checking the signature and validity
interval on the credential.

After evaluating a query, LIAR sends to the User Client the so called Standard TuLiP
response (XML) document containing all the answers, i.e. for each query condition it returns
one or more instances satisfying this query condition. The top-level element of the Standard
TuLiP response is the response XML element. Besides the unique ID and IssueInstant XML
attribute it also contains InResponseTo XML attribute containing the value of the ID XML
attribute from the corresponding query. Listing 5.7 shows an example of the Standard TuLiP
response document.

Listing 5.7: Example Standard TuLiP Response for query
discount_ii(eStore-pub-key,alice-pub-key,X) containing one answer

discount_ii(eStore-pub-key,alice-pub-key,[studentid:0176453,department:ewi,study:cs]).

<?xml version="1.0" encoding="UTF−8"?>
2 <response ID="tulip−ut−ewi−971a79f2−9a50−4838−8d0a−2f6657613dba"

InResponseTo="tulip−ut−ewi−2f72ca8f−25bc−4d50−b1eb−3861e42f1562"
4 IssueInstant="2007−06−29T04:04:55">

<issuer>jeroen−pub−key</issuer>
6 <permission>

<rolename>discount</rolename>
8 <mode>ii</mode>

<issuer><entityID>eStore−pub−key</entityID></issuer>
10 <subject><entityID>alice−pub−key</entityID></subject>

<properties>
12 <studentid>0176453</studentid>

<department>ewi</department>
14 <study>cs</study>

</properties>
16 </permission>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
18 . . .

</Signature>
20 </response>

A Standard TuLiP response contains one permission element for each successful instance of
a query. If a query fails, the response does not contain any permission element. The issuer of
a Standard TuLiP response is the entity which runs an instance of the LIAR algorithm which
received the initial query.

The following example demonstrates the system behaviour in the response to a concrete
query.

Example 5.2 Assume we have the following set of credentials (we use the logic program-
ming notation as shown in Sect. 5.2):

(1) discount_ii(eStore-pub-key, X) ←− accredited_io(accBoard-pub-key, Y ),
student_oi(Y,X).

(2) accredited_io(accBoard-pub-key, ut-pub-key).
(3) student_oi(ut-pub-key, alice-pub-key).
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Fig. 5.2: Credential Discovery with LIAR

Figure 5.2 presents the steps performed by LIAR during evaluation of the query ←−
discount_ii(eStore-pub-key, alice-pub-key). In Fig. 5.2 each rounded rectangle represents a
credential server associated with the entity of which name is printed at the top of the rect-
angle, each arrow represents a message, and the number above each arrow represents the
message order. Below, we show the execution of the algorithm for the above mentioned
query.

We assume that the instance of the LIAR algorithm is run by a user Jeroen with the pub-
lic identifier jeroen-pub-key. In message 1 LIAR receives the query in which the query
issuer (Jeroen) asks whether the user with public id alice-pub-key has a discount at the in-
ternet store identified by eStore-pub-key. The query is signed by the query issuer. Before
evaluating the query, LIAR checks the signature on the query, then it checks the mode of
the atom discount_ii(eStore-pub-key, alice-pub-key). Because the mode is ii (= (In, In)),
LIAR knows that it should try to fetch credentials matching this query from the issuer of
discount_ii(eStore-pub-key, alice-pub-key) which is eStore. This is done in messages 2 and
3 . After receiving the matching credentials, LIAR validates each of them, which means that

for each fetched credential LIAR checks the signature and the validity interval. Next, every
successfully validated credential is instantiated by unifying the head of this credential with
the query atom. In our case only one credential is fetched (credential (1)) and the resulting
instance is:

discount_ii(eStore-pub-key, alice-pub-key) ←−
accredited_io(accBoard-pub-key, Y ), student_oi(Y, alice-pub-key).

We see that in order to prove the initial query, now LIAR has to evaluate the following query:

←− accredited_io(accBoard-pub-key, Y ), student_oi(Y, alice-pub-key).

In evaluating this (sub) query, LIAR first checks the mode associated with atom
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accredited_io(accBoard-pub-key, Y ). Because the mode is io (= (In,Out)), the defining
credentials (if any) should be stored by accBoard. The accBoard is queried in message 4 ,
resulting in fetching credential (2) in message 5 . The credential is then validated, and then
the instance of this credential - accredited_io(accBoard-pub-key, ut-pub-key) - is used. As
the body of credential (2) is empty, the main query reduces to ←− student_oi(ut-pub-key,
alice-pub-key). The mode of student_oi(ut-pub-key, alice-pub-key) is oi (=(Out , In)) which
means that related credentials should be stored by the subject: alice in this case. Alice is
contacted by LIAR with message 6 , and asked for all credentials moded oi (=(Out , In))
she stores (see Chapter 4 for the explanation why LIAR fetches all the credentials moded
(Out , In) and not only credentials having role name student and mode (Out , In)). In the re-
sponse, in message 7 , credential (3) is returned and then validated. This credential unifies
with student_oi(ut-pub-key, alice-pub-key) and at this point the original query has been eval-
uated successfully. The information about successful evaluation, containing only one per-
mission element corresponding to the discount_ii(eStore-pub-key, alice-pub-key)) credential
atom, is sent to the User Client in message 8 .

5.3.3 Public Identifiers.

Recall that Standard TuLiP uses a public key as a public identifier of a user. In Example
5.2 we have silently assumed that there exists a mapping from each public identifier to a
concrete network addres. Indeed, Standard TuLiP requires an underlying service to map
public identifiers to concrete network addresses.

Distributed Hash Tables (DHT) [85] represent a class of overlay P2P systems with key-
based routing functionality. They provide a look up service similar to a hash table. In a
DHT system, data are distributed across many nodes. Each node itself provides a hash table
functionality: each block of data (a value) is identified by a key. One can store a new key
and value pair or, knowing the key, one can read the associated value. The node storing the
value corresponding to the given key can be usually identified by this key. For instance, in
the Kademlia DHT system [70] each node is identified by a nodeID which is a 160-bit binary
number. The key has the same format as the nodeID. A key in Kademlia DHT system (and
also in most of other DHT proposals) is a hash (Kademlia uses 160-bit SHA1 digest) of the
value (a data block to be stored under the given key). In a typical DHT lookup operation,
the nodeID is determined first based on the key and then the same key is used to read the
corresponding data. Therefore, the user may not be aware of the actual storage location for
the data. Kademlia extends the Chord DHT system [94]. Other important DHT proposals are
Pastry [88] and Tapestry [106]. Kademlia is also used in BitTorrent [24].

Standard TuLiP can take advantage of the lookup mechanism offered by DHTs. In this
case the user does not have to provide a dedicated credential server but rather uses the storage
mechanism provided by the concrete DHT implementation. When using a DHT, each user
credential (normally stored at the credential server corresponding to this user) is stored at the
DHT node corresponding to the user public identifier: the hash of the user public identifier
becomes a key under which all user credentials and all other user related information would
be stored (like the current IP address of the User Client application acting in the name the
user). When DHT technology is used, the user cannot choose her own credential server and
the security and reliability of the system is strongly influenced by the security and reliability
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of the chosen DHT implementation. The Kademlia DHT system, for example, provides the
services like data replication, resistance against denial of service attack and introduction of
fake nodes to the system, and all this at a high performance O(log(n)) where n is the number
of nodes.

5.4 Using Standard TuLiP

In using the Standard TuLiP trust management system we can distinguish the following ac-
tions that may be performed by the user: (1) issuing a credential, and (2) sending a query and
receiving a response.Below we briefly summarise issues raised by these actions.

Writing Credentials. When issuing a credential one must be sure that any new credential
is traceable. The User Client application helps in writing credentials by checking that each
credential is traceable. Before accepting the credential, the User Client checks if for every
mode value of the head of the credential there exists a permutation of the credential atoms
occurring in the body of the credential and the corresponding mode values such that the
credential is traceable. If this is not the case, the credential is refused. If for a mode value
of the head there exists more than one valid mode assignment for the credential atoms in
the body, the user will be allowed to choose a preferred one. For example, the user may
have a preference to limit the number of subject traceable credentials in order to increase the
reliability of the system.

The User Client application determines the mode of a credential atom by querying the
mode register. The selected mode is then embedded into the credential so that the mode
register does not have to be referred to during query evaluation later. Recall that the mode
assigned determines the actual credential storage location. The User Client application au-
tomatically uploads the new credential to the suitable credential server (as given by the user
record associated with the public id of the user).

When a user introduces a credential with a new role name, it has to be registered with the
mode register. The mode register can be accessed through the TuLiP home-page, or by using
a dedicated application. Each user can request the registration of additional role names and
the corresponding modes by requesting it through the TuLiP web-site (http://tulip-ut.nl).

Writing Queries. Every Standard TuLiP query must be well-moded. Therefore, before
sending a query, the User Client application checks for well-modedness. If some credential
atom in the query has more than one mode value, it is possible that there will be more than
one variant of mode assignment that makes the query well-moded. In such a case, the User
Client lets the user select the preferred mode assignment (e.g. the one that is likely to yield
the correct answer most efficiently). The User Client application sends the query to the LIAR
engine associated with the user issuing the query and presents the received response.

5.5 Implementing TuLiP

We shown the general description of the system architecture and the required system com-
ponents in Sect. 5.3. In this section we give the reader additional insight into our concrete
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Fig. 5.3: The components in our proof of concept implementation of TuLiP

implementaion and the design choices we had to make.
The crucial part of our TuLiP system is the compliance checker LIAR (Fig. 5.3) We

implement LIAR using Prolog. Prolog as a Logic Programming language is the most natural
language to implement LIAR as Prolog provides the unification and backtracking, on which
LIAR depends and which are not trivial to implement otherwise. As our Prolog engine we
chose the YAP (Yet Another Prolog), which is an efficient Prolog implementation largely
compatible with the ISO-Prolog standard.

In a real system LIAR needs to be able to receive the queries through the network inter-
face. LIAR also needs to be able to fetch the credentials from the credential servers. Although
YAP allows us to implement a client/server functionality directly in Prolog we chose a more
scalable approach. We decided to keep “the Prolog part” of LIAR as general as possible. In
particular we decided that LIAR should not directly deal with parsing of XML content (in
the case when credentials are encoded using XML), checking signatures, time stamps and
with other application dependent activities. For this reason, in our implementation, LIAR
communicates with the outside world not directly but with the help of two other components
which we call the Query Server and the Credential Requester (Fig. 5.3). The Query Server is
a simple implementation of an HTTP server written in Python, which performs all the neces-
sary validation of a query (like checking the signature and the time stamps - see also Chapter
5). Only if the validation succeeds, the Query Server forwards the query to LIAR. The Cre-
dential Requester handles the communication between LIAR and a Credential Server. When
LIAR needs to fetch a credential it communicates with the Credential Requester and the Cre-
dential Requester creates the appropriate credential request (in the XML format), signs the
request, and then sends the request to a credential server. The returned set of credentials is
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Fig. 5.4: The web interface to the Mode Register

validated and the resulting list of credentials are returned to LIAR. The Credential Server is
also an HTTP server application written in Python.

One more component shown in Fig. 5.3 is the User Interface Server (uiserver). The role
of this component is to separate the user interface (the front end) from the actual realisation
of the underlying communication mechanism. This simplifies the creation of new front-ends
as they can be simply “plugged” into the User Interface Server.

Although our demo implementation does not require the mode register to function, we
built one as an example. The Mode Register can be accessed in two ways. The first way
is through the web interface (Fig. 5.4). Each user can check which credential atoms are
already registered and which mode is assigned to which credential atom. The web interface
also allows the user to search for the specific credential atom and the modes in a convenient
way by using the search functionality. A user having administration privileges (currently
the TuLiP team at the UT) can add/remove credential atoms and change the modes through
the administration site. Another way to access the mode register is through the use of the
Security Assertion Markup Language (SAML) interface (see Chapter 5 for the description of
SAML). The SAML interface is implemented in PHP. Here we would like to mention that it
was a challenge to build a working implementation of the signing and validating operations
in PHP. Finally, we provide a command-line application Mode Checker (written in Python),
in which we demonstrate how to use the interface so that the user can build her own utilities.

As a standard, in our implementation messages are signed (we use the XML signature
standard [96]) but not encrypted. The credentials are exchanged as base-64 encoded character
strings (neither signed nor encrypted).

Based on our implementation, we provide a demo which demonstrates the application of
TuLiP in the distributed content management. In our case the contents are the pictures. Each
user stores a number of pictures. Pictures are divided into several user defined groups and the
credentials stored by different users influence which user can access which group of pictures.
Figure 5.5 shows the User Client (the front-end) application run by one of the users.
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Fig. 5.5: The Front-End of our Content Management Demo System

Initially the user sees the list of known entities (we call them buddies in the figure).
When the user selects a buddy, the front-end sends the request (through the User Interface
Server - uiserver) to the appropriate LIAR engine and the query is evaluated. Based on
the credentials discovered during the evaluation, the user gains access to several groups of
pictures (Figs. 5.5 (b,d)). When the user does not have sufficient credentials to see the content
of another user, a warning message is displayed (Fig. 5.5 (d)). A more detailed description
of our demo consisting of the description of the user credentials, their XML encoding, and
an example sequence of messages being exchanged in the system can be found at our web
site: http://dies.cs.utwente.nl/~czenkom/tulip/doc.

We are proud to say that we implemented our TuLiP system in relatively short time. Even
though the time needed to implement the LIAR algorithm is hard to measure precisely (as
we were constantly improving the algorithm and fixing the bugs), the basic version of the
LIAR algorithm was implemented in approximately 2 weeks. For the rest of the system
we needed approximately 6 weeks (here we would like to emphasise that the author of this
thesis was the only programming force). Table 5.1 lists different system components, the lan-
guages used, and how many lines of code (including comments) contains the corresponding
implementation.

5.5.1 The Threat Model

In a real world setting we have neither error-free designs (because they tend to be too com-
plex) nor perfectly secure systems (because that would be too costly). Standard TuLiP is not
an exception here, and in this section we look closer at the situations when something is most
likely to go wrong.

Standard TuLiP is a distributed system (Fig. 5.1). At any given time there will be many
instances of Standard TuLiP components operating independently from each other and there
is no centralised authority with a complete overview over what happens in the system. For
instance, in a system with millions of users millions of the credential servers would be active
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Component Language Lines of Code
Front-End Action Script (Flash), HTML, CSS 562
uiserver Python 1215

Query Server Python 1307
LIAR Prolog (YAP) 737

Credential Requester Python 1117
Credential Server Python 1192

Mode Register HTTP, PHP, CSS, MySQL 3132
Mode Checker Python 666
Other utilities Python 285

Total: 10213

Table 5.1: Components and the corresponding implementation language and programming effort in
lines of source code

at any given moment with hundreds of thousands of LIAR engines being engaged in evaluat-
ing as many queries. In such a highly distributed system one should consider many possible
threats at different levels of abstraction: from the low level problems like reliability of the
network connection or stability of each particular system component, to higher level security
threats resulting from the malicious activity of an adversary. Although by choosing an appro-
priate security technology many of the threats can be avoided (at least to some extent), one
still should consider situations in which some system components are controlled by a mali-
cious user. A malicious user - an adversary - may attack any part of the system: starting from
the network connection and ending with more sophisticated techniques that would result in
the attacker having full control over the user’s account.

A complete analysis of all possible threats in Standard TuLiP is outside the scope of this
thesis. In our opinion such an analysis should be carried out for a production code and would
be rather superficial for the proof of concept implementation that we provide. In particular,
as mentioned in Sect. 5.3 we assume that an appropriate implementation level mechanism
can be used to guarantee the confidentiality, integrity, and non-repudiation in the system.
In this section therefore we focus on high level security threats so that we can demonstrate
the intrinsic security properties of Standard TuLiP in face of the malicious activity of an
adversary regardless of the underlying technology used.

We present an analysis for the two most prominent usage scenarios: issuing a credential,
and using the system to evaluate an access control query. This distinction is helpful because
different system components play a different role in each of this two scenarios. For instance,
the mode register is normally not required during the evaluation of a query, but may be needed
if the process of issuing a credential was disturbed. On the other hand, the LIAR engine is
crucial during the evaluation of a query, but it is not used during the process of issuing a
credential. In our analysis we refer to the high level architecture of Standard TuLiP as given
in Fig. 5.1.

Issuing a credential In issuing a credential the following components are used (Fig.
5.1): the User Client, the Mode Register, and one or more Credential Servers. The LIAR
engine is not used when issuing a credential. We say that a credential is properly issued
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if (1) all credential atoms occurring in the credential are assigned the right modes and (2)
the credential is deposited in the right credential server. At a higher level we identify the
following two threats:

1. the Mode Register provides the wrong modes for the credential atoms in the credential,

2. the credential is uploaded to the wrong Credential Server.

Abstracting away from the low level implementation problems (like network failures), the
first threat above can result from two different situations: (a) the User Client application may
be compromised and (b) the Mode Register becomes compromised and returns the wrong
modes for the credential atoms. The situation in which the User Client application is com-
promised (a) is less interesting here, as it implies that the adversary probably already has
access to the user’s machine and therefore the user’s TuLiP account. In this case the ad-
versary can masquerade as the user, and Tulip cannot prevent any malicious actions of the
attacker. Acquiring a compromised version of the User Client application by the user can be
avoided by performing an integrity check (see for example GnuPG [51]) on the application
binaries. An attack on the Mode Register (b) is more subtle and therefore more interesting.
Recall that the User Client application receives from the Mode Register the modes of the
credential atoms for each newly issued credential. Because in Standard TuLiP the modes
assigned to the credential atoms in a credential determine the depositary of this credential,
by returning invalid modes from a compromised mode register, the adversary influences the
storage location for newly issued credentials. The following example demonstrates what may
happen when the adversary can manipulate the modes.

Example 5.3 Assume that eStore wants to issue a credential allowing all the students from
each accredited university to receive a discount. Then let us assume that the valid (i.e. non-
compromised) mode values for the credential atoms discount, accredited, and student are:
mode(discount) = ii = (In, In), mode(accredited) = io = (In,Out), and mode(student) =
oi = (Out , In). In this configuration the discount credential would be stored by the eStore
(because eStore is the issuer), the accredited credentials would be stored by the accreditation
board (accBoard in our case), and each student would store her student credential. If the
Mode Register is compromised, the adversary may freely change the modes of the credential
atoms. Assume that the modes returned by the compromised mode register are as follows:
mode(discount) = ii = (In, In), mode(accredited) = oi = (Out , In), and mode(student) =
oi = (Out , In). What is different in this configuration is that now each accredited credential
is expected to be stored by the accredited university. Summarising, the credential issued and
stored by the eStore has the following form:

C1 : discount_ii(eStore-pub-key, X) ←−
student_oi(Y,X), accredited_oi(accBoard-pub-key, Y ).

This credential is traceable w.r.t. the mode values returned by the compromised mode
register, but is not traceable w.r.t. the actual mode values stored in the original mode register
(i.e. mode(discount) = ii, mode(accredited) = io, and mode(student) = oi). Now assume
that alice, who is a student of the University of Twente (ut) issues query:
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Q :←− discount_ii(eStore-pub-key, alice-pub-key).

The University of Twente is an accredited university. Because in the proper mode assign-
ment, mode(accredited) = io = (In,Out), the accreditation board (accBoard) stores the
credential:

C2 : accredited_io(accBoard-pub-key, ut-pub-key).

Now, when query Q is received by the LIAR engine, LIAR will fetch credential C1

(which is not traceable w.r.t. to the original mode assignment) and LIAR will search for
the accredited credential at the credential server corresponding to the University of Twente
rather than at the server of the accreditation board accBoard. This is because the mode of the
accredited credential atom has been changed from (In,Out) to (Out , In). Beacuse ut does
not store credential C2 (it is stored by accBoard), LIAR will return negative answer to the
query. It means that alice will not receive the discount she is eligible for.

Example 5.3 shows that by manipulating the modes in a compromised mode register the
adversary can disable some services available to the user. This can be regarded as a subtle
version of the deny-of-service attack. An additional observation from Example 5.3 is that the
compromised mode register can influence only the newly issued credentials. In Example 5.3,
if the right version of credential C1 was already stored at the credential server of eStore then
the answer to query Q would be positive and alice would receive the discount as expected.

In Example 5.3, a user is not given authorisation she has rights to. A much worse situation
would be if a user who is not authorised to perform an action on a resource actually receives
the authorisation. For this to happen it is not sufficient to break the mode register. Even
when the Mode Register is broken, this has only influence on the newly issued credentials.
It means that, in order to gain unauthorised access to a resource or a service, one has to be
able not only to have control over where the credential get stored and have access to the right
credential server, but also have to be able to issue new credentials on behalf of another user.
This can happen if the public identifier of a user becomes compromised, which means that
the adversary has full control over the user’s account.

An interesting situation occurs when the mode register is not compromised (i.e. the mode
register returns valid mode values), but the adversary has full control over the user’s account.

Example 5.4 Assume the following state:

eStore:
(1) discount_ii(eStore, X) ←− accredited_io(accBoard, Y ), student_ii(Y,X).

accBoard:
(2) accredited_io(accBoard, ut).

ut:
(3) student_ii(ut, alice).

In this scenario each credential is stored by the issuer. As a consequence, even when hav-
ing full control over the account of another user, the adversary cannot receive authorisation
which was not already given to the user. In our example, if credential (3) does not exist, the
adversary will not have discount at the eStore despite having full control over alice’s account.
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Example 5.4 shows, that by careful selection of the modes the bad consequences of an attack
can be limited.

Evaluating a query When evaluating a query, the use of the Mode Register is not re-
quired. Unless other system components are also compromised, the system remains con-
sistent as long as no new credentials are added to the system even if the Mode Register is
broken. Still, the use of the mode register during the query evaluation can be considered in
order to dynamically validate the modes occurring in a credential.

Assuming that the mode register is not being used during the query evaluation, the ad-
versary may target the following system components: the User Client, the LIAR engine, and
the Credential Servers.

If the adversary manages to make the user work with a compromised User Client appli-
cation, the adversary can quickly gain full access to the user’s machine and therefore take
full control over the user’s TuLiP account. As before, this attack can be avoided by perform-
ing an integrity check on the on the application binaries and by making sure that the user’s
computer is free of malicious code.

The LIAR engine and user’s credential server might be run on the user’s machine or
can be considered part of the underlying infrastructure. In the first case, the integrity of the
LIAR engine (resp. a credential server) must be protected in the same way as the integrity
of the User Client application. A compromised LIAR engine (resp. credential server) leads
to the same problems as a compromised User Client application: a compromised user public
identifier and the full control of the user’s account by the adversary.

In the case when the LIAR engine and the credential servers are part of the underlying
infrastructure, the integrity of the system directly depends on the security of the underlying
infrastructure. In Section 5.3.3 we show how Distributed Hash Tables (DHT)[85] can be
used in Standard TuLiP to provide the mapping between a user’s public identifier and the
network address of the credential server corresponding to this user. In this approach the
credential server is part of the infrastructure, and the user does not have to run an instance
of a credential server on her machine. The same approach can be used for the deployment
of a LIAR engine. In this approach, besides running an instance of a credential server, each
DHT node also runs an instance of the LIAR engine. In this case the LIAR engine used to
evaluate a query may be determined by the identifier of the query issuer or the issuer of the
first credential atom in the query (other approaches are also possible). As a consequence, the
user does not know which LIAR engine is used to evaluate the query. This makes access to
the LIAR engine more difficult also to the adversary.

5.6 Related Work

We present the general related work on trust management in Chapter 2 and the related work
specific to Core TuLiP in Chapter 4. In this section we emphasise the practical and imple-
mentation related aspects of the most important trust management systems.

The idea of binding a public key to the action this public key is trusted to perform is al-
ready present in the pioneering work on Decentralised Trust Management by Blaze, Feigen-
baum and Lacy [27]. Here we follow this approach by using public keys as the user identifier.
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Similar approach can also be found in the SDSI/SPKI system [36]. As already mentioned in
Chapter 2, the credential discovery is not covered by these works.

In RT [66, 67] the problem of common vocabulary is handled by the means of the XML
namespaces. The authors propose the so called Application Domain Specification Document
(ADSD) to hold the role names and the related information like storage type or a natural-
language description of these role names. In ADSD each role name contains a vocabulary id,
which can be the URI of the ADSD, and the id of the role name in this ADSD. ADSDs allow
issuers to agree on the common vocabulary and storage types. Because in RT each issuer can
have its own ADSD, this approach seems to be more “distributed” than ours. However, in
Standard TuLiP we could allow for multiple mode registers as well, and then, for example,
include the URI of the mode register defining the given role name in the uri attribute of the
rolename element. We believe, however, that such a decentralisation makes system hard to
manage and error-prone as it is hard to guarantee that all the systems storing ADSDs will
be online when one needs them. In our approach the mode register is used when writing
credentials and is normally not needed during query evaluation.

Trust-X , introduced by Bertino et al. [22], uses the X -TNL trust negotiation language
for expressing credentials and disclosure policies. Trust-X certificates are either credentials
or declarations. Credentials state personal characteristics of the owner and are certified by a
Credential Authority (CA). Declarations also carry personal information about its owner but
are not certified. Trust-X is then closer to the traditional authorisation mechanisms based on
identity-based public-key systems like X.509.

The eXtensible Access Control Markup Language (XACML) [77] supports distributed
policies and also provides a profile for the role based access control (RBAC). However, in
XACML, it is the responsibility of the Policy Decision Point (PDP) – an entity handling
access requests – to know where to look for the missing attribute values in the request. The
way missing information is retrieved is application dependent and is not directly visible in
the supporting language.

5.7 Conclusions
In this chapter we present Standard TuLiP - a logic based trust management system. Standard
TuLiP can be seen as a practical realisation of Core TuLiP which we present in Chapter 4
and which is a full-fledged trust management system. The basic constituents of Standard
TuLiP are the Standard TuLiP trust management language, the mode register for managing
role names and the associated modes, a set of credential servers, where users store their
credentials, and a terminating sound and complete Lookup and Inference AlgoRithm (LIAR)
which guarantees that all required credentials can be found when needed.

Standard TuLiP is decentralised. Every user can formulate his/her own security policy
and store credentials in the most convenient and efficient way for himself. Standard TuLiP
does not require a centralised repository for credential storage, nor does it rely on any external
PKI infrastructure. Standard TuLiP credentials are signed directly by their issuers so that no
preselected Certification Authority (CA) is needed.

With this we show that it is possible to design and implement a trust management system
that is theoretically sound yet possible to deploy in practice.



CHAPTER 6

TuLiP
Logic Programming for
Trust Management

In Chapter 4 we present Core TuLiP - the theoretical foundations for the TuLiP trust man-
agement system. There we introduce the basic syntax of the language, show the declarative
semantics, and show the use of modes in planning the credential distribution and in the cre-
dential discovery. Finally, we define the Lookup and Inference AlgoRithm (LIAR) and prove
that LIAR is sound and complete wrt the declarative semantics. Then, in Chapter 5 we inves-
tigate practical aspects of deploying Core TuLiP. We look at the credential encoding, multiple
storage options, and we define the necessary system components. Finally, we discuss the sys-
tem from the perspective of a user: how to create a credential, how to issue a query, what
problems can be encountered when the user identifier becomes compromised, and how to
protect the system against such problems. In this chapter, we combine our experience and
knowledge from the previous chapters and we finally present TuLiP - a trust management
system based on logic programming. Here we formalise the notions informally introduced
in the previous chapters like redundant storage or (user-defined) constraints. Finally, we also
improve the declarative reading of the language by separating the meaning of a credential
from the way a credential should be deployed.
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6.1 Introduction

In this chapter we present TuLiP - a Trust management system based on Logic Programming.
TuLiP is built on the theory we present in Chapter 4 - Core TuLiP. The syntax of Core TuLiP
is restricted: a credential atom can have only two arguments - namely the issuer and the
subject. A credential in Core TuLiP is assumed to be stored by only one entity, which is
determined by the mode assigned to a given credential atom. Moreover, Core TuLiP supports
only built-in constraints. To some extent, we lift these restrictions in Standard TuLiP (Chapter
5), where we add an additional XML argument to a credential atom and we allow a credential
to have more than just one depositary. The extensions presented in Chapter 5 have a practical
dimension and so they are neither defined formally nor fully discussed. For instance, the
mapping between the XML content contained in the XML element properties of the Standard
TuLiP credential and the corresponding logic programming term is not formally defined.
Standard TuLiP also supports only built-in constraints.

In this chapter we address the above mentioned issues. First, we extend the syntax of
the language: we allow for an unbounded number of arguments, each of which can be either
a standard Prolog term or a so called Prolog Markup Language (PML) term representing
actual XML content. Next, we deal with the constraints in TuLiP. We define the built-in
and the user-defined constraint, we set out the requirements for the constraints evaluation
algorithm, and we introduce the notion of a TuLiP package.

In order to handle redundant storage in a formal way we introduce the notion of a bound
credential. Bound credentials allow us to separate the intended meaning of a credential from
where the credential is stored. This is the solution to the problem of the changing order of the
body atoms depending on the mode assignment (see Chapter 4, Section 4.3, Example 4.3).

To accommodate these extensions, we refine the notion of the depositary and the traceable
credential. We also extend our LIAR algorithm appropriately and we show the updated proofs
of the soundness and completeness of the extended algorithm.

In this chapter, we also show how to map an XML content to a Prolog term and vice
versa.

The chapter is structured as follows. In Section 6.2 we present the extended syntax of
the language and we update the definition of the depositary and the traceable credential.
In Section 6.3 we formally define built-in and user-defined constraints. Section 6.4 deals
with the redundant storage. Here we introduce bound atoms and credentials. In Section 6.5
we present the extended LIAR algorithm, we show an example, and then we discuss the
declarative semantics and soundness and completeness results. Finally, in Section 6.6, we
introduce Prolog Markup Language (PML). We finish the chapter with the Related Work
(Section 6.7) and the Conclusions (Section 6.8).

6.2 TuLiP

We start the description of the TuLiP trust management system by presenting its language.
The language of TuLiP is an extension of Core TuLiP (Chapter 4) and Standard TuLiP (Chap-
ter 5) in that a credential is definite clause H :− B1, . . . , Bn where H is a credential atom
and each Bi can be either a credential atom or a constraint. The difference between TuLiP
and Core TuLiP (and Standard TuLiP) is in the definition of a credential atom and a con-
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straint (we discuss the constraints in next section). In Core TuLiP, a credential atom has two
arguments: the issuer and the subject. A Standard TuLiP credential has three arguments:
the issuer, the subject and the properties where the properties argument can hold additional
attributes of the issuer and/or the subject and is a Prolog Term representing XML content (we
present how XML content maps to a Prolog term in Section 6.6). The mode of the properties
argument is fixed to be Out . In TuLiP we relax this limitation by allowing a credential atom
to have any number of arguments and more flexible mode assignments. Summarising, in
TuLiP, a credential atom has the following form:

rolename(issuer, subject, arg1, . . . , argn).

where n ≥ 0. Both the issuer and the subject must be either a ground term or a logical
variable. Each credential argument argi may be an arbitrary Prolog term.

Adding additional arguments to a credential atom might seem to be a straightforward
syntactic extension, but this is not so. Adding additional arguments to a credential atom af-
fects the discovery of the subject-traceable credentials. The following example demonstrates
the problem:

Example 6.1 Take the following set of credentials:

(1) r(a,X, Y ) ←− r1(b,X, Y ).
(2) r1(b,X, Y ) ←− r2(c,X, Y ).
(3) r2(c, d,X) ←− X == attr.

and assume that all predicate symbols have mode (In, In, In). The ==/2 is a built-in con-
straint which takes two terms as arguments and succeeds if they are strictly equal. For the
given mode assignment, credential (1) is stored by entity a, credential (2) by entity b and cre-
dential (3) by entity c. Take the query Q = r(a, d, attr). Applying the LIAR algorithm we
use in Standard TuLiP to this query would result (after a few iterations, working top-down)
in the following clauses being added to CLSTACK:

r(a, d, attr) ←− r1(b, d, attr).
r1(b, d, attr) ←− r2(c, d, attr).
r2(c, d, attr) ←− attr == attr.

When ==(attr, attr) is selected as a new goal, because ==/2 is a built-in constraint, ==
(attr, attr) can be immediately evaluated and added to FACTSTACK. Then, in Phase 2 of the
algorithm, atoms r2(c, d, attr), r1(b, d, attr), and r(a, d, attr) are added to FACTSTACK. The
answer to the query is - as expected - positive.

Now, if we change the modes of all predicate symbols above to (Out , In, In), credential
(1) is stored by entity b, credential (2) by entity c, and credential (3) by entity d. Now the
result of the evaluation of query Q = r(a, d, attr) is different. LIAR first fetches from entity
d all credentials for which the mode of the first (issuer) argument is Out and the mode of the
second (subject) argument is In . In our example, LIAR fetches credential (3) (in unchanged
form) and adds it to CLSTACK. Next, working bottom-up, LIAR fetches credential (2) from
c and credential (1) from b. At this point, the contents of CLSTACK is the following:

r(a,X, Y ) ←− r1(b,X, Y ).
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r1(b,X, Y ) ←− r2(c,X, Y ).
r2(c, d,X) ←− X == attr.

In this case, however, no well-moded goal can be selected from any clause in the CLSTACK.
This is because the unification X → attr cannot be performed when discovering credentials
bottom-up (see Chapter 4) and the variable X in credential (3) will never be unified with attr
from the query. As a consequence, the evaluation of the query Q returns negative answer.

To cope with this problem we need to modify the requirements for the traceable credential
and update Definition 4.3.2 from Chapter 4 (here, the mode of an atom A is denoted by mA).

Definition 6.2.1 (Traceable, Depositary) Let cl = H :− B1, . . . , Bn, n ≥ 0, be a well-
formed credential. We say that cl is traceable if the following conditions hold:

• ∀i ∈ [1, n], if mBi(issuer) = Out and mBI (subject) = In then for each argument
argj of Bi, argj ∈ Out(Bi),

• if mH(issuer) = In , then depositary(cl) = issuer(H),

• if mH(issuer) = Out and mH(subject) = In then:

– for each argument argi of H , argi ∈ Out(H),

– if subject(H) contains a ground term then depositary(cl) = subject(H),

– if subject(H) contains a variable, then there exists a prefix B1, . . . , Bk of the
body such that:

* ∀i ∈ [1, k], mBi(issuer) = Out and mBi(subject) = In ,
* subject(H) = subject(B1),
* subject(Bi+1) = issuer(Bi), and is a variable, for i ∈ [1, k − 1],
* issuer(Bk) contains a ground term,

and depositary(cl) = issuer(Bk).

Definition 6.2.1 says that if there is a credential atom in a credential such that the mode
of the issuer is Out and the mode of the subject is In then each argument of this credential
atom must have mode Out .

6.3 Constraints

A TuLiP credential can have constraints in the body. Informally, a constraint in TuLiP is any
atom which is not a credential atom. A constraint can be either a built-in constraint, or a user-
defined constraint. A built-in constraint is available in any TuLiP system and is embedded
directly into the decision algorithm LIAR. A user-defined constraint, on the other hand, can
be defined by the user. In this section we address the following issues: (1) what is in the
definition of a user-defined constraint, (2) what is the mode associated with a user-defined
constraint, (3) who is the depositary of a user-defined constraint, and (4) how a user-defined
constraint is evaluated.

We start with an example showing user-defined constraints.
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Example 6.2 A company has a private database storing the information about each em-
ployee. Some data in the employee database is confidential and should not be visible to a
company partner or some other external entity. For this reason, before showing the data of an
employee, the company filters the data to check which data can and which cannot be revealed
(in other words the company checks whether the request comply with the company privacy
policy).

(1) employee(comp, X, Y ) ←− employee_int(comp, X,Y2), filter(Y2, Y ).
(2) filter([ ], [ ]).
(3) filter([AttName : AttValue|Atts],Atts2) ←− confidential(AttName), filter(Atts,Atts2).
(4) filter([AttName : AttValue|Atts], [AttName : AttValue|Atts2]) ←−

non-confidential(AttName), filter(Atts,Atts2).
(5) confidential(salary).
(6) confidential(bankaccount).
(7) non-confidential(position).
(8) employee_int(comp,marcin, [salary:2500,position:phd,bankaccount:123456]).

From the clauses above only two clauses are credentials: clause (1) and clause (8). We have
then two credential atoms: employee/3 and employee_int/3. All the remaining atoms are
therefore constraints. We see that each constraint must have its definition. For instance the
definition of constraint filter/2 consists of credentials (2), (3), and (4). A constraint clause
may contain other (built-in or user-defined) constraints, but it must not contain a credential
atom. For instance in constraint clause (3) above, confidential(AttName) is another user-
defined constraint.

In Example 6.2 in order to keep the policy consistent and complete, for each attribute one
needs to remember to define the attribute as either confidential or non-confidential. If an
attribute is neither confidential nor non-confidential (simply because one forgot to add an ap-
propriate definition) the filter/2 will fail for each non-empty attribute list making employee/3
failing as well. If the policy is inconsistent (an attribute is defined to be confidential and non-
confidential at the same time) one will receive two answers for each inconsistent attribute:
one including the inconsistent attribute and one not including the inconsistent attribute.

Keeping the policy consistent could be made easier if one may use negation in the policy.
In such a case one can simply write:

(3) filter([AttName : AttValue|Atts],Atts2) ←− not(public(AttName)), filter(Atts,Atts2).

Now it is sufficient to only say that an attribute is public, otherwise an attribute will be treated
as confidential.

How constraints are distinguished from the credential atoms is implementation dependent
- for instance, if a constraint is encoded in XML language, then the corresponding XML
document may have an XML element or attribute specifying whether the given element is a
constraint or a credential atom.

Definition 6.3.1 (Constraints, Constraint Clauses) A constraint is a predicate symbol hav-
ing zero or more arguments which is not a credential atom. A constraint clause is a definite
clause of the form C0 ←− C1, . . . , Cn., n ≥ 0 in which each Ci is a constraint. The set of
constraint clauses defining a constraint is called the definition of this constraint.
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Because constraints are used in credentials, we require each constraint to be moded, and
we require each constraint clause to be well-moded. In contrast to a credential atom, the
mode of a constraint does not determine where the defining constraint clauses are stored.

Example 6.3 Returning to Example 6.2 assume the following mode assignment:

mode(employee) = (In, In,Out),
mode(employee_int) = (In, In,Out),

mode(filter) = (In,Out),
mode(confidential) = (Out),

mode(non-confidential) = (Out).

For this mode assignment, credential (1) and credential (8) are stored by comp. But
where are the constraint clauses (2)− (7) stored ? If LIAR needs to evaluate credential (1),
LIAR needs all the remaining clauses. Clause (8) is fetched by the means of the standard
discovery process (described in Chapter 4). For the constraint clauses, the most intuitive
approach (and the approach we decided to take) is to fetch all the constraint clauses required
to evaluate credential (1) at the same time when credential (1) is being fetched. So, in TuLiP,
credential (1) and constraint clauses (2)− (7) are fetched at the same time (see Section 6.3.1
where we introduce the notion of a package). We can say therefore, that for each constraint
clause (2) − (7), the depositary of this constraint clause is comp. We also say that comp is
the issuer for each of the constraints (2)− (7).

Definition 6.3.2 (Depositary of a Constraint Clause) Let cl be a credential and let C be a
constraint occurring in the body of cl. Let clC be a constraint clause defining C. Then:

• issuer(clC) = issuer(cl), and

• depositary(clC) = depositary(cl).

The consequence of Definition 6.3.2 is that if the credential containing a constraint C
is stored at more than one location, then each constraint clause defining C will be dupli-
cated at each of these locations. In other words, a constraint definition follows the credential
containing the constraint.

In Example 6.2, the definition of each constraint is given be a Prolog program. As the
following example shows, this is not always the case.

Example 6.4 In a medical corporation mediCorp, a physician may read a medical record of
a patient only if she is the designated primary care physician of this patient. In TuLiP this
can be expressed as follows:

readRecord(mediCorp, X, P,R) ←− retrieveFromDatabase(P,R),
extractField(R, ’desig-physician’, X).

Here both retrieveFromDatabase(P,R) and extractField(R, ’desig-physician’, X) are user-
defined constraints. The former makes a connection to a company database and retrieves the
medical record file R of patient P . The latter takes document R and extracts the value of
field ’desig-physician’. R can be an XML document but can be also any other document in
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a proprietary document format used by mediCorp. In the case the database does not contain
any record for the given patient or the retrieved document does not contain the requested
field, the corresponding predicate fails.

In this example the definition of retrieveFromDatabase(P,R) and extractField(R,
’desig-physician’, X) is given in some external module. We call such a module an evaluation
algorithm. This algorithm must be known to LIAR in order to evaluate
retrieveFromDatabase(P,R) or extractField(R, ’desig-physician’, X). In general, LIAR needs
to be provided with an appropriate evaluation algorithm for every user-defined constraint.

The entity which defines a constraint must provide an evaluation algorithm for this con-
straint. There is a lot of freedom in designing the evaluation algorithm for a constraint.
However, some restrictions apply:

Definition 6.3.3 (Requirements for the Evaluation Algorithm) Given a constraint C, the
evaluation algorithm for C must satisfy the following two conditions:

(1) the algorithm terminates,

(2) the algorithm returns either FAIL or a non-empty finite set α1, . . . , αn of ground com-
puted answer substitutions such that for each i:

(2a) Dom(αi) = VarOut(C),
(2b) the algorithm respects the modes: if VarIn(C) = ∅ then VarOut(Cαi) = ∅.

A constraint evaluation algorithm can be given in terms of a well-moded Prolog program
which is then executed by means of the LD-resolution (SLD resolution combined with the
leftmost selection rule) in which case we additionally assume that the program terminates for
each well-moded query.

6.3.1 Packages
In order to evaluate a constraint, the issuer of this constrain must provide all the related
constraint clauses (if written as logic programming rules) or the evaluation algorithm which
can be used to evaluate this constraint. The constraint clauses (resp. the evaluation algorithm)
is fetched together with the credential that contains the constraint. This brings us to the notion
of a TuLiP package.

Definition 6.3.4 (Package) Given a credential cl, a package corresponding to this creden-
tial consists of (1) credential cl and (2) a set of constraint clauses defining each constraint
appearing in credential cl or a constraint evaluation algorithm capable of evaluating each
of the constraints appearing in credential cl.

We use cl : ζ to denote a package for credential cl where ζ represents a set containing the
constraint clauses or a constraint evaluation algorithm. If C is a constraint occurring in cl
then the process of evaluating constraint C is denoted by ζ(C). The issuer of package cl : ζ
is the issuer of credential cl. Similarly, the depositary of package cl : ζ is the depositary of
credential cl.
In other words, a package contains a credential and everything else which is necessary to
evaluate all the constraints occurring in this credential.

We conclude this section with an example.
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Example 6.5 For the Example 6.2 we have the following package cl : ζ:

• cl:

(1) employee(comp, X, Y ) ←− employee_int(comp, X, Y2), filter(Y2, Y ).

• ζ: the set of constraint clauses:

(2) filter([ ], [ ]).
(3) filter([AttName : AttValue|Atts],Atts2) ←−

confidential(AttName), filter(Atts,Atts2).
(4) filter([AttName : AttValue|Atts], [AttName : AttValue|Atts2]) ←−

non-confidential(AttName), filter(Atts,Atts2).
(5) confidential(salary).
(6) confidential(bankaccount).
(7) non-confidential(position).

6.4 Multiple Modes and Redundant Storage
Sometimes we want to store credentials at more than just one location. For instance, one may
need to protect the system from node failures, or overcome the problem of authorities going
off line or being unreachable. Additionally, having more than just one storage configuration
can allow the system deployer to better balance the network load.

For these reasons, in Standard TuLiP (Chapter 5) we allow a credential to have more than
one depositary. We do so by assigning multiple modes to a credential atom, which allows us
to store a credential at the issuer and, at the same time, at the subject or some other entity. For
instance, if student(ut, alice) is a credential, and student/2 has modes (In, In) and (Out , In)
then student(ut, alice) will be stored at both ut and alice.

Recall from Chapter 4 that the mode of a credential atom may influence the order of the
atoms in the body of a credential. This is the consequence of requiring that each credential
must be well-moded. By allowing multiple modes to be assigned to one credential atom, the
order of the atoms in the body of a credential may be different for each selected combination
of modes. The following example illustrates this:

Example 6.6 Consider the following credential:

(1)discount(eStore, X) ←− accredited(accBoard, Y ), student(Y,X).

and assume that the mode register has the following mode assignments:

mode(discount) = {(In, In), (Out , In)}
mode(accredited) = {(In,Out), (Out , In)}

mode(student) = {(In, In), (Out , In)}

Recall that for the credential to be traceable, for every mode value of the head, there must
exist a permutation of the credential atoms occurring in the body and the corresponding mode
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values such that the credential is well-moded. For the credential above one can choose the
following two versions of the credential above:

(2) discount(eStore, X)(In,In) ←− accredited(accBoard, Y )(In,Out),

student(Y,X)(In,In).

(3) discount(eStore, X)(Out,In) ←− student(Y,X)(Out,In),

accredited(accBoard, Y )(Out,In).

Here, the superscript denotes the mode associated with the given credential atom. For cre-
dential (3) above, we had to change the order of the atoms in the body in order to keep
the credential well-moded. We call credentials (2) and (3) bound credentials and the origi-
nal credential without fixed modes (1) an unbound credential or simply a credential if clear
from the context.

Example 6.6 shows that when multiple modes are allowed one needs to choose not only
the storage (by selecting appropriate modes) but one may also need to change the order of
the atoms in the body in order to keep the credential well-moded. It would be much easier
to select the desired storage options and let the system produce the required corresponding
bound version of a credential automatically. For this reason we introduce the notion of a
bound credential.

In the remaining part of this section we formalise the concept of bound credentials. We
begin with the definition of a mode set. Recall, that in Standard TuLiP, the modes are stored
in a mode register. A mode set is its theoretical equivalent.

Definition 6.4.1 (ModeSet) Let Pred be a set of predicate symbols. A mode setM for Pred
is a mapping that maps every predicate symbol p/n ∈ Pred to a set of modes. Given a
predicate symbol p/n, we denote the set of modes assigned to p/n byM(p/n).

Now we can introduce the notion of bound atoms and credentials.

Definition 6.4.2 (Bound Atoms, Bound Credentials) Let A be an atom (a credential atom
or a constraint). We call AmA a bound atom if mA ∈ M(A). A credential HmH ←−
A
mA1
1 , . . . , A

mAn
n , in which HmH and each A

mAi
i are bound atoms, is called a bound cre-

dential. A bound query is a sequence of bound atoms.

Definition 4.2.2 of well-moded clauses from Chapter 6 applies directly to bound creden-
tials:

Definition 6.4.3 (Well-Moded Bound Credentials and Queries)
Let cl = HmH ←− A

mA1
1 , . . . , A

mAn
n be a bound credential. We say that cl is well-moded

if ∀ i ∈ [1, n] the following holds:

VarIn(AmAii ) ⊆ ⋃i−1
j=1 VarOut(A

mAj
j ) ∪VarIn(HmH ), and

VarOut(HmH ) ⊆ ⋃n
j=1 VarOut(A

mAj
j ) ∪VarIn(HmH ).

A bound queryAmA1
1 , . . . , A

mAn
n is well-moded iffHmH :− AmA1

1 , . . . , A
mAn
n , whereHmH

is a (dummy) bound atom with zero arity, is a well-moded bound credential.
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Similarly, we provide “bound” versions of Definition 4.3.1 (Well-Formed), and Definition
6.2.1 (Traceable, Depositary).

Definition 6.4.4 (Well-Formed Bound Credentials) Let cl = HmH ←− AmA1
1 , . . . , A

mAn
n

be a bound credential. We say that cl is well-formed if it is well-moded and issuer(H) is a
ground term.

Definition 6.4.5 (Bound Traceable, Depositary) Let cl = HmH ←− A
mA1
1 , . . . , A

mAn
n ,

n ≥ 0, be a well-formed credential. We say that cl is traceable if the following conditions
hold:

• ∀i ∈ [1, n], if mAi(issuer) = Out and mAi(subject) = In then for each argument
argj of Ai, argj ∈ Out(Ai),

• if mH(issuer) = In , then depositary(cl) = issuer(H),

• if mH(issuer) = Out and mH(subject) = In then:

– for each argument argi of H , argi ∈ Out(H),

– if subject(H) contains a ground term then depositary(cl) = subject(H),

– if subject(H) contains a variable, then there exists a prefix B1, . . . , Bk of the
body such that:

* ∀i ∈ [1, k], mBi(issuer) = Out and mBi(subject) = In ,
* subject(H) = subject(B1),
* subject(Bi+1) = issuer(Bi), and is a variable, for i ∈ [1, k − 1],
* issuer(Bk) contains a ground term,

and depositary(cl) = issuer(Bk).

Having defined bound (credential and constraint) atoms and bound credentials, and know-
ing when a bound credential is traceable, we are now interested in the relationship between a
non-bound credential and a bound credential. The concept of a binding defines this relation-
ship.

Definition 6.4.6 (Binding) A binding B for a credential cl = H ←− B1, . . . , Bn is a
tuple (π,mH ,mB1 , . . . ,mBn), where π is a permutation {1, . . . , n} → {1, . . . , n} and
mH ∈ M(H), mB1 ∈ M(B1), . . . ,mBn ∈ M(Bn). The result of applying binding B to
credential cl is the bound credential clB = HmH ←− B

mBπ(1)

π(1) , . . . , B
mBπ(n)

π(n) .

The result of applying a binding to a non-bound credential is precisely one bound cre-
dential. For this bound credential, we do not know yet if it is traceable. From all bindings
available for a credential, only a small fraction of them will “produce” traceable bound cre-
dentials. We call this set of bound traceable credentials a bound set:

Definition 6.4.7 (Bound Set) Let cl be a non-bound credential. The bound set correspond-
ing to cl, denoted BoundSet(cl), is defined as follows:

BoundSet(cl) = {clB | B is a binding for cl and clB is traceable.}
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Given a non-bound credential cl, only the bound traceable credentials from BoundSet(cl) are
potential candidates for the actual deployment. Here we need to know what is the minimal
set of bound traceable credentials (a minimal bound set) which guarantees proper credential
discovery. For instance, if a credential atom in the head of a non-bound credential is assigned
three different mode values, one should guarantee that a query containing this atom can be
answered for each mode value available for this atom. So, if p/2 is a credential atom and
M(p/2) = {(In,Out), (In, In), (Out , In)} then the bound queries p/2(In,Out), p/2(In,In),
and p/2(Out,In) all should yield the correct answer (either negative or positive). Therefore,
what we need is a non-bound version of the definition of well-modedness and traceability.
Here, we cannot simply reuse the “bound” version of these definitions as they assume one
mode value per predicate symbol, whereas in case of non-bound credentials one predicate
symbol can be assigned multiple mode values.

Definition 6.4.8 (Well-Moded and Traceable Non-Bound Credentials) LetM be a mod-
eset. We say that non-bound credential cl = H ←− B1, . . . , Bn is well-moded (resp.
traceable) w.r.t.M if for each mH ∈ M(H) there exists a binding BmH such that cBmH is
a bound credential which has HmH in the head and is well-moded (resp. traceable).

From Definition 6.4.8 we see that a non-bound credential is well-moded, if for each mode
value of the head there exists at least one binding resulting in a well-moded bound credential
having the same mode in the head. For a non-bound credential cl to be traceable, Definition
6.4.8 requires that there exists at least one bound traceable credential for each mhead(cl) ∈
M(head(cl)) having the same mode in the head. What happens if the bound set for a non-
bound credential is not minimal, i.e. there are more than one bound traceable credential for
each mode value of the head ? In such a case, we require that at least one of them is chosen
and deployed. One can also decide to deploy more than just one of them, which can improve
the overall reliability of the system, as “the same” credential is discoverable at more than one
node.

Example 6.7 Consider a credential cl = p(a,X) ←− q(b, Y ), r(Y,X). and the following
mode sets: M(p/2) = M(q/2) = M(r/2) = {(In, In), (In,Out), (Out , In)}. This
credential is traceable. In fact for each mode of the head there exists at least one traceable
binding of the credential having the same mode in the head. For the mode of the head
mp/2 = (In, In), we have six traceable bindings resulting in the following set of bound
traceable credentials:

(1) p(a,X)(In,In) ←− q(b, Y )(In,Out), r(Y,X)(In,In).

(2) p(a,X)(In,In) ←− q(b, Y )(In,Out), r(Y,X)(In,Out).

(3) p(a,X)(In,In) ←− q(b, Y )(In,Out), r(Y,X)(Out,In).

(4) p(a,X)(In,In) ←− r(Y,X)(Out,In), q(b, Y )(In,In).

(5) p(a,X)(In,In) ←− r(Y,X)(Out,In), q(b, Y )(In,Out).

(6) p(a,X)(In,In) ←− r(Y,X)(Out,In), q(b, Y )(Out,In).

From this set of bound credentials one has to choose at least one of them and deploy it
according to Definition 6.4.5. For mp/2 = (In,Out) and the permutation of the atoms in
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the body q(b, Y ), r(Y,X), there exists only one traceable binding producing the following
bound traceable credential:

(7) p(a,X)(In,Out) ←− q(b, Y )(In,Out), r(Y,X)(In,Out).

Similarly, for the mode of the head mp/2 = (Out , In), we also have only one traceable
binding. The resulting bound traceable credential is:

(8) p(a,X)(Out,In) ←− r(Y,X)(Out,In), q(b, Y )(Out,In).

Summarising, BoundSet(cl) consists of eight bound traceable credentials. From these, at
least one bound traceable credential from credentials (1)-(6), credential (7), and credential
(8) must be physically deployed. The user (or the system integrator) may also choose to
store all credentials from the bound set in order to improve the reliability of the credential
discovery. According to Definition 6.4.5, the depositary of credentials (1) to (7) is a, and the
depositary of credential (8) is b.

How the mode information is embedded into a logical clause is implementation de-
pendent. For example, the mode information may be encoded as an additional ground
argument of a credential. In Standard TuLiP (Chapter 5) we take a different approach,
and we rewrite the name of a predicate symbol, so that the predicate symbol name al-
ready encodes the associated mode. For instance, given credential student(ut, alice, 23) and
M(student/3) = {(In, In,Out), (In,Out ,Out), (Out , In,Out)}, we write:

(1) : student_ioo(ut, alice, 23).
(2) : student_iio(ut, alice, 23).
(3) : student_oio(ut, alice, 23).

Here suffix ioo states for (In,Out ,Out), iio states for (In, In,Out), and oio states for (Out ,
In,Out).

Redundant Storage and Constraints A constraint can have only one mode. This
is because the depositary of a defining constraint clause is the same as the depositary of
the credential that contains the constraint (see Definition 6.3.2). Therefore redundancy in
the storage of a constraint clause does not come from the multiple modes assigned to a
constraint but from the redundancy in the storage of a credential containing this constraint. If
a credential has multiple depositaries, so has each constraint clause related to this credential.

6.5 LIAR
In this section we present the extended version of LIAR - Lookup and Inference AlgoRithm.
We show how LIAR gives answer to a query and how LIAR fetches the remote clauses
needed for the query evaluation.

LIAR operates on a state (first introduced in Chapter 4). Because now the state con-
tains also user-defined constraints and also because now we use packages rather than raw
credentials, we need to update the original definition of a state.
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Definition 6.5.1 A state P is a finite collection of pairs (a, Pa) where Pa is a collection of
packages and a is the depositary of these packages. A state also includes a set of system-wide
built-in constraint clauses C.

The extended LIAR algorithm is structured in a similar way as the original LIAR al-
gorithm we present in Chapter 4. The most important difference is the evaluation of the
constraints and the use of packages. The input to the algorithm is a package containing a
bound query, the constraint clauses defining the constraints in the query and the evaluation
algorithm for the constraints in the query. The output of the algorithm is the FACTSTACK
containing the ground answers to the query.

In what follows, we define LIAR and present the pseudo code. Next, we give a more
detailed description of how the algorithm works and give an example. Finally, we discuss
the declarative semantics of the extended state and the soundness and completeness of the
extended algorithm.

Before we proceed we need to update Definition 4.4.1 to take bound atoms into account
and we need to introduce some auxiliary notation (partly repeated from Chapter 4 for the
convenience of the reader).

Definition 6.5.2 (Connected) We say that two bound atoms AmA and BmB are connected
if the following two conditions are simultaneously satisfied:

• mA(issuer) = mB(issuer) = Out and mA(subject) = mB(subject) = In ,

• subject(A) is ground and subject(A) = subject(B).

Let A be an atom and S be a set of atoms. We adopt the following conventions:

(i) We write A
∼∈ S iff ∃A′ ∈ S, such that A′ ≈ A (i.e. A′ is a renaming of A).

(ii) We write A
∼
/∈ S iff @A′ ∈ S such that A′ ≈ A.

(iii) We write A
θ
↪→ S iff ∃A′ ∼∈ S standardised apart w.r.t. A such that γ = mgu(A,A′)

and Aθ ≈ Aγ.

(iv) We write A
∼
/∈m S if A

∼
/∈ S or ∀A′ ∈ S, such that A′ ≈ A, mA′ 6= mA.

Definition 6.5.3 Let A : ζ be a package where A = A
mA1
1 , . . . , A

mAn
n is a well-moded

bound query and ζ the set of the related constraints and the constraint evaluation algorithm.
We define the Lookup and Inference AlgoRithm (LIAR) which given a state P and package
A : ζ as the input returns the (possibly empty) sets of atoms FACTSTACK and GOALSTACK.
The algorithm is shown in Listing 6.1.

Remark 6.5.4 LIAR operates on bound atoms and credentials. Therefore, in Listing 6.1
all atoms and credentials are bound. For sake of clarity, however, we skip the superscripts
carrying the mode information. We use the following rule: if A is a bound atom, then its
mode is mA.
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INPUT: A : ζA. /* A is the initial query and
2 ζA the corresponding solver package. */

Init :
4 CLSTACK : {� ←− A : ζA};

FACTSTACK = GOALSTACK = CONSTRAINTSTACK = VISITED = ∅ ;
6 SATISFIED = FALSE ;

REPEAT
8 Phase 1 (Top-down resolution):

CHOOSE:
10 c : H ←− B, C,D : ζ ∈ CLSTACK and

B′ ⊆ FACTSTACK, such that the following conditions hold:
12 (i) B and B′ unify with mgu θ,

(ii) Cθ is well-moded,
14 (iii)IF C is a credential atom THEN

Cθ
∼
/∈m GOALSTACK;

16 IFmC(issuer) = Out and mC(subject) = In THEN
subject(Cθ) /∈ VISITED ;

18 ENDIF
ENDIF

20 IF C is a constraint THEN
IF ζ(Cθ) succeeds with c.a.s. γ1, . . . , γnTHEN

22 FOR EACH γi ∈ {γ1, . . . , γn}DO
IF Cθγi /∈ FACTSTACK THEN

24 ADD Cθγi to FACTSTACK;
ENDIF

26 END FOR EACH
IF nothing has been added to FACTSTACKTHEN

28 goto Phase 1;
ELSE

30 goto Phase 2;
ENDIF

32 ELSE
goto Phase 1;

34 ENDIF
ELSE

36 /* C is a credential atom */
Let E be the maximum prefix of D such that

38 ∀E ∈ E, E is a constraint atom;
IF E is empty THEN

40 ADD (Cθ, true : ζ) to CONSTRAINTSTACK;
ELSE

42 ADD (Cθ,Eθ : ζ) to CONSTRAINTSTACK;
ENDIF

44 ENDIF
ADD Cθ to GOALSTACK;

46 IFmC(issuer) = In THEN
FETCH at issuer(Cθ) all packages {c1 : ζ1, . . . , cn : ζn} such that

48 ∀i, i ∈ [1, n],mhead(ci) = mC and head(ci) unifies
with Cθ with mgu γi ;

50 FOR EACH ciγi : ζi ∈ {c1γ1 : ζ1, . . . , cnγn : ζn}DO
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IF ciγi : ζi

∼
/∈ CLSTACK THEN ADD ciγi : ζi to CLSTACK ENDIF

52 END FOR EACH
ELSEIFmC(issuer) = Out and mC(subject) = In THEN

54 FETCH all packages {c1 : ζ1, . . . , cn : ζn} stored at subject(Cθ) such that
∀i, i ∈ [1, n],mhead(ci)(issuer) = Out and mhead(ci)(subject) = In ;

56 ADD subject(Cθ) to VISITED;
FOR EACH ci : ζi ∈ {c1 : ζ1, . . . , cn : ζn}DO

58 IF ci : ζi

∼
/∈ CLSTACK THEN ADD ci : ζi to CLSTACK ENDIF

END FOR EACH
60 ENDIF

Phase 2 (Bottom-up model-building):
62 REPEAT

CHOOSE: H ←− B ∈ CLSTACK and B′ ⊆ FACTSTACK,
64 such that B and B′ unify with mgu θ ;

IFHθ /∈ FACTSTACK THEN
66 IF ∃(H ′,E : ζ) ∈ CONSTRAINTSTACK such that

H ′ and Hθ unify with mgu γ and
68 ζ(Eγ) succeeds THEN

ADD Hθ to FACTSTACK;
70 ENDIF

ENDIF;
72 IFmH(issuer) = Out AND mH(subject) = In

AND issuer(Hθ) /∈ VISITED THEN
74 ADD to CLSTACK the package:

dummy(X, issuer(Hθ))(Out,In) ←−
76 dummy(X, issuer(Hθ))(Out,In). : �

where � is a dummy empty constraint solver.
78 ENDIF

UNTIL nothing can be added to FACTSTACK;
80 IF A is ground and A ⊆ FACTSTACK THEN SATISFIED = TRUE ENDIF

UNTIL SATISFIED OR nothing can be added to FACTSTACK and CLSTACK;
82 OUTPUT = FACTSTACK,GOALSTACK;

Listing 6.1: The Lookup and Inference AlgoRithm (LIAR)

The algorithm maintains four stacks: CLSTACK contains the set of packages collected so
far, FACTSTACK contains the set of atomic logical consequences inferred from CLSTACK,
and GOALSTACK contains the set of bound atomic goals already processed (to handle loops).
The CONSTRAINTSTACK contains pairs of the form (Goal,Constraint) where Goal is a
bound atom and Constraint is either a conjunction of bound atoms, or a constant true. Ad-
ditionally, the VISITED stack contains the set of entities that have been visited during the
processing of subject traceable chains.

Initially, CLSTACK contains a single package corresponding to the initial query A; the
other stacks are empty. The algorithm is divided in two phases. Phase 1 performs the cre-
dential (package to be precise) discovery and the constraint evaluation. First, it selects a
new well-moded (bound) atom Cθ from the body of a (bound) credential from a pack-
age in CLSTACK such that there exists a prefix B in the body which unifies with some
B′ ∈ FACTSTACK. If B is empty, then the first atom from the body is selected as the new
goal. If given the selected goal Cθ, C is a credential atom, the algorithm checks the mode
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mc of C. If mC(issuer) = Out and mC(subject) = In then it checks if the subject(Cθ)
has not been visited yet. In such a case there is no need to add this atom to the GOALSTACK
because all the related subject traceable clauses has been already fetched. After selecting a
new goal, the algorithm checks whether it is a constraint or a credential atom.

If the selected goal is a constrain, the algorithm evaluates the constraint using the algo-
rithm provided in the package corresponding to this constraint. If a package does not contain
an evaluation algorithm or the constraint is a built-in constraint then the default Prolog engine
is used to evaluate the constraint. The effect of evaluating a constraint may be one or more
(constraint) facts. Each such fact is added to FACTSTACK (if not already there), and then the
algorithm proceeds to Phase 2. If the result of the evaluation is an empty set of computed
answer substitutions or nothing was added to FACTSTACK, the algorithm returns to Phase 1
and tries to select another goal. If the evaluation yields at least one computed answer, the
algorithm proceeds to Phase 2.

If C is a credential atom, the pair (Cθ,Eθ) is added to the CONSTRAINTSTACK in order
to record the constraints on which Cθ may depend. Here, in order to simplify the algorithm,
we decided to look only at the set of constraint atoms E directly following C in the clause.
Later, when the algorithm generates a new factH , before adding it to the FACTSTACK, it can
check if there exists at least one pair (H ′θ,E) ∈ CONSTRAINTSTACK such that H ′ unifies
withH with mgu γ, and Eγ is satisfied. If such a pair is not in the CONSTRAINTSTACK then
H does not contribute to the solution set and should be discarded (though it is possible that
H will be accepted later after new constraints are added to CONSTRAINTSTACK on whichH
depends and at least one of them is satisfied). Recall that when selected goal is a credential
atom and the constraint prefix E (lines 36-43) is empty, the pair (Cθ, true) is added to the
CONSTRAINTSTACK in Phase 1 meaning that every newly generated fact H such that H and
Cθ unify should be added to the FACTSTACK regardless of other existing constraints.

Having selected a new goal which is a credential atom, the algorithm fetches the new
packages from either issuer(Cθ) or subject(Cθ). If mode of the selected new goal C, mC ,
is such that mC(issuer) = In then LIAR fetches all the packages c : ζ from issuer(Cθ)
in which head(c) has mode mC and unifies with Cθ. When mode of C, mC , is such that
mC(issuer) = Out and mC(subject) = In then all packages c : ζ such that
mhead(c)(issuer) = Out and mhead(c)(subject) = In are fetched from subject(Cθ) and
added to CLSTACK.

In Phase 2, the model of the set of clauses in the CLSTACK is build bottom-up. Newly
inferred facts are added to the FACTSTACK (after checking the constraints). For a fact having
mode m such that m(issuer) = Out and m(subject)
= In , the algorithm adds a dummy clause to CLSTACK, so that the subject traceable chains
can be discovered properly (see also the description of the original LIAR algorithm in Chap-
ter 4).

In the following example we demonstrate the evaluation of an example query on the
policy presented in Example 6.2. Here we concentrate on the constraints. We present the
credential discovery in Chapter 4.

Example 6.8 We assume the set of clauses from Example 6.2 and the mode assignment as in
Example 6.3. Therefore, we have the state in which comp stores the following two packages:

1. Pkg1 = cl1 : ζ1:
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• cl1:

(1) employee(comp, X, Y ) ←− employee_int(comp, X, Y2), filter(Y2, Y ).

• ζ1:

(2) filter([ ], [ ]).
(3) filter([AttName : AttValue|Atts],Atts2) ←−

confidential(AttName), filter(Atts,Atts2).
(4) filter([AttName : AttValue|Atts], [AttName : AttValue|Atts2]) ←−

non-confidential(AttName), filter(Atts,Atts2).
(5) confidential(salary).
(6) confidential(bankaccount).
(7) non-confidential(position).

2. Pkg2 = cl2 : ζ2:

• cl2:

(8) employee_int(comp,marcin,
[salary:2500,position:phd,bankaccount:123456]).

• ζ2 = ∅.

We assume that the following query is issued:

Q = employee(comp,marcin, X) : ∅.
The query does not contain any constraints: therefore the ζ component of the query is the
emptyset. Below we show the contents of CLSTACK, GOALSTACK, CONSTRAINTSTACK,
and FACTSTACK as the algorithm progresses.

After initialisation the contents of the stacks is the following:

CLSTACK :
(P1) : � ←− employee(comp,marcin, X) : ∅.

GOALSTACK : ∅.
CONSTRAINTSTACK : ∅.
FACTSTACK : ∅.

LIAR selects Cθ = employee(comp,marcin, X) as the new goal (lines 9-19). The new goal
is a credential atom. Because Cθ is not followed by any constraint, the following element is
added to CONSTRAINTSTACK (lines 36-43):

(employee(comp,marcin, X), true : ∅).
The mode associated with employee/3 is (In, In,Out). Therefore, LIAR knows that it
should fetch the related packages from comp. comp stores two packages: Pkg1 and Pkg2.
Pkg1 contains a credential whose head unifies with the selected new goal. LIAR fetches
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Pkg1 and the instance of Pkg1 is added to CLSTACK (lines 46-52). Because FACTSTACK
is empty, the algorithm returns to Phase 1 with the following contents of the CLSTACK,
GOALSTACK, CONSTRAINTSTACK, and FACTSTACK:

CLSTACK :
(P1) : � ←− employee(comp,marcin, X) : ∅.
(P2) : employee(comp,marcin, Y ) ←− employee_int(comp,marcin,Y2),

filter(Y2, Y ). : ζ1
GOALSTACK :

(G1) : employee(comp,marcin, X)
CONSTRAINTSTACK :

(C1) : (employee(comp,marcin, X), true : ∅)
FACTSTACK : ∅.

The algorithm selects Cθ = employee_int(comp,marcin,Y2) to be the new goal. C is a cre-
dential atom, but now C is followed in the containing clause (cl1) by constraint filter(Y2, Y ).
Therefore, CONSTRAINTSTACK is extended with the following element (lines 36-43):

(C2) : (employee_int(comp,marcin,Y2), filter(Y2, Y ) : ζ1).

Because mode(employee_int) = (In, In,Out), LIAR knows that the related packages must
be stored by comp. Package Pkg2 contains a credential whose head unifies with the selected
goal. Pkg2 is fetched and the instance of Pkg2 is added to CLSTACK (lines 46-52). The
algorithm proceeds to Phase 2. Here, at some point, Pkg_2 is selected from CLSTACK which
yields:

Hθ = employee_int(comp,marcin, [salary:2500,position:phd,bankaccount:123456]).

Before adding Hθ to FACTSTACK, LIAR first checks is there exists at least one related
constraint in CONSTRAINTSTACK. In this case, the constraint on which Hθ depends is
filter(Y2, Y ) and the corresponding element in CONSTRAINTSTACK is C2. Therefore, we
have (lines 65-70):

E = filter(Y2, Y )
ζ = ζ1
γ = {Y2/[salary:2500,position:phd,bankaccount:123456]}.

Because ζ1(filter([salary:2500,position:phd,bankaccount:123456], Y )) succeeds, the follow-
ing fact (Hθ) is added to FACTSTACK:

employee_int(comp,marcin, [salary:2500,position:phd,bankaccount:123456]).

When returning to Phase 1, the contents of the CLSTACK, GOALSTACK, CONSTRAINTSTACK,
and FACTSTACK is therefore the following:

CLSTACK :
(P1) : � ←− employee(comp,marcin, X) : ∅.
(P2) : employee(comp,marcin, Y ) ←− employee_int(comp,marcin, Y2),



Section 6.5. LIAR 133

filter(Y2, Y ). : ζ1
(P3) : employee_int(comp,marcin,

[salary:2500,position:phd,bankaccount:123456]). : ∅
GOALSTACK :

(G1) : employee(comp,marcin, X)
(G2) : employee_int(comp,marcin, Y2)

CONSTRAINTSTACK :
(C1) : (employee(comp,marcin, X), true : ∅)
(C2) : (employee_int(comp,marcin,Y2), filter(Y2, Y ) : ζ1)

FACTSTACK :
(F1) : employee_int(comp,marcin,

[salary:2500,position:phd,bankaccount:123456])

Back in Phase 1, LIAR chooses package P2 for which we have:

B = employee_int(comp,marcin, Y2)
B′ = employee_int(comp,marcin, [salary:2500,position:phd,bankaccount:123456])
θ = {Y2/[salary:2500,position:phd,bankaccount:123456]}.

Thus, the new goal Cθ is:

Cθ = filter(Y2, Y )θ = filter([salary:2500,position:phd,bankaccount:123456], Y ).

The newly selected goal is a user-defined constraint. Therefore, Cθ is evaluated using the in-
formation (ζ1) provided in the package (P2 = Pkg1) corresponding to the containing clause
(cl1). The ζ1 component of Pkg1 contains a well-moded program defining the constraint
filter/2. Therefore, Cθ will be evaluated using the LD-resolution on query Cθ and pro-
gram ζ1, i.e. ζ1(Cθ). The result of this evaluation is the computed answer substitution (line
21):

γ = {Y/[position:phd]}.
As the result,Cθγ = filter([salary:2500,position:phd,bankaccount:123456], [position:phd])
is added to FACTSTACK (lines 22-26).
Next, the algorithm moves to Phase 2. Here, at some point, LIAR chooses package (line
64):

(P2) : employee(comp,marcin, Y ) ←− employee_int(comp,marcin, Y2),
filter(Y2, Y ). : ζ1.

We have:

B = employee_int(comp,marcin,Y2), filter(Y2, Y )
B′ = employee_int(comp,marcin, [salary:2500,position:phd,bankaccount:123456]),

filter([salary:2500,position:phd,bankaccount:123456], [position:phd])
θ = {Y/[position:phd],Y2/[salary:2500,position:phd,bankaccount:123456]}
Hθ = employee(comp,marcin, [position:phd]).
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Before Hθ can be added to FACTSTACK, LIAR again checks CONSTRAINTSTACK. In this
case, the only related element in CONSTRAINTSTACK is C1. Because for C1, ζ = true, this
means thatHθ does not depend on any constraint and therefore can be added to FACTSTACK.

Because no new facts can be generated, the algorithm terminates returning one answer:
employee(comp,marcin, [position:phd]).

6.5.1 Declarative Semantics, Soundness and Completeness

We show the declarative semantics for the original state (without user-defined constraints)
in Chapter 4 and we also prove that LIAR (again, without user-defined constraints) is sound
and complete with respect to the declarative semantics. In Core TuLiP, we only have built-
in constraints. In TuLiP, a user may provide her own constraint evaluation algorithm. This
makes the declarative semantics harder to define because the constraint evaluation algorithm
is - in general - unknown. The declarative semantics of a constraint evaluation algorithm
can be given if the evaluation algorithm is given in terms of a well-moded Prolog program
(see the comment under Definition 6.3.3) and the LD-resolution. In this case the definition
of each constraint in a package is given by one or more constraint clauses. Because the
constraints and the defining constraint clauses are user-defined, different users can use the
same predicate names but mean different things. We call this problem “name clashing”. In
what follows we assume that the name clashing is avoided (e.g. by renaming). Under these
assumptions, the declarative semantics of a state is given in terms of logic programming as
follows:

Definition 6.5.5 Let P be the state {(a1, P1), . . . , (an, Pn), C}, and A be an atom.

• We denote by P (P) the set of (credential or constraint) clauses C1 ∪ · · · ∪ Cn ∪ C
whereCi, i ∈ [1, n] is the set of clauses contained in the corresponding set of packages
Pi. We call P (P) the LP-counterpart of state P .

• We say that A is true in state P iff P (P) |= A.

Bellow we present the updated proofs of soundness and completeness of the extended
LIAR algorithm. We start with the updated version of Lemma 4.4.3.

Lemma 6.5.6 Let P be a state and FACTSTACK be the result of the algorithm execution for
some well-moded query. Let A be an atom in FACTSTACK. Then A is ground.

Proof. The proof proceeds by induction on the size of FACTSTACK. In the basic case
FACTSTACK is empty and so the proposition holds for any atom in the FACTSTACK.
Now, assume that FACTSTACK contains only ground atoms. We prove that each time a new
atom is added to FACTSTACK, this atom is ground. An atom is added to FACTSTACK in two
cases:

1. as the result of the constraint evaluation in Phase 1 of the algorithm, or

2. as the result of the bottom-up evaluation of the facts in FACTSTACK and a credential
clause selected from CLSTACK in Phase 2 of the algorithm.
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Case 1: The atom is a constraint and is added to FACTSTACK as the result of the constraint
evaluation in Phase 1 of the algorithm. Recall that constraints are defined in terms of a
well-moded Prolog program.
LetCθ be the selected goal such thatC is a constraint atom. By construction of the algorithm
Cθ is well-moded. This means that all the input positions of Cθ are ground. By Definition
6.3.3, the evaluation algorithm respects the modes, and therefore for any computed answer
substitution σ resulting from the evaluation of the well-moded constraint Cθ, we have that
Cθσ is ground and will be added to FACTSTACK.

Case 2: The atom is a credential atom added to the FACTSTACK as the result of the bottom-
up evaluation of the facts in FACTSTACK and a credential clause selected from CLSTACK
in Phase 2 of the algorithm. But then, by Lemma 4.4.3, any new credential atom added to
FACTSTACK is ground. ut

Now we can prove the soundness and the completeness of the extended LIAR algorithm
w.r.t. the declarative semantics.

Theorem 6.5.7 (soundness) Let P be a state and FACTSTACK be the result of executing the
extended LIAR on P and a well-moded query. Then ∀A ∈ FACTSTACK, P (P) |= A.

Proof. We have two cases:

1. A is a constraint atom.

2. A is a credential atom.

If A is a constraint atom then by the assumption that the constraint evaluation algorithm
is given in terms of a Prolog program and the SLD resolution the thesis follows from the
soundness of the SLD resolution. IfA is a credential atom then by Theorem 4.4.4 P (P) |= A.

ut

Theorem 6.5.8 (completeness) Let P be a state and then FACTSTACK,GOALSTACK be the
result of executing the extended LIAR on P and a given well-moded goal.

Then ∀C ∈ GOALSTACK, if ∃ a successful SLD derivation δ : C θ−→P (P) � then C
θ
↪→

FACTSTACK.

Proof. First we prove that the theorem holds for any constraint in GOALSTACK.
If C ∈ GOALSTACK and C is a constraint atom then, by the construction of the algorithm,
C is evaluated using either built-in or user-defined algorithm (fetched with the package con-
taining the credential with this constraint atom). Since we are assuming that the constraint
evaluation algorithm is given by a set of well-moded clauses and the SLD-resolution the
thesis follows by definition.
Now, let C be a (bound) credential atom in GOALSTACK. Then, by Proposition 4.4.6 and by

the fact that the theorem holds for any constraint in GOALSTACK, C
θ
↪→ FACTSTACK. ut

6.6 Prolog Markup Language (PML)
TuLiP supports positional arguments in a natural way. This, however, requires additional
knowledge when interpreting a credential or a constraint atom as the intended meaning of an
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argument is not explicit. Consider for instance the following credential atom:

student(ut, alice, 23, cs, tel, 0123456)

Whereas the meaning of the first two arguments is clear from the definition of a credential
atom (the issuer the subject) and, what is the intended meaning of the remaining arguments?
Prior using this credential atom in a credential, the credential issuer must know the pre-
cise meaning of each of the arguments. Even though this process may be automated to some
extent, referring to an argument by the argument position may be fragile and error prone. Ad-
ditionally, further argument parsing, matching between semantically similar arguments, and
other argument related transformations are hard to automate without additional knowledge
which may often require human interaction. The situation may be improved if an argument is
named, i.e. the argument can be uniquely identified by the name without the need of referring
to the position of an argument within the credential or constraint atom. One possible way of
handling named attributes is to use XML [97]. In XML, we can easily assign names to at-
tributes (as the names of XML elements and attributes). Additionally, as XML content is also
ordered (in the so called document order), the structure of the XML data set can be used as
the additional information source whenever applicable. For instance, the intended meaning
of the arguments in the credential atom above can be clarified by using the following XML
structure:

<student id="0123456">
<age>23</age>
<department>cs</department>
<study>tel </study>

</student >

XML is a popular document interchange format and is also frequently used as a practical
language for policy exchange [21, 77] (see Chapter 5, where we also use XML to encode a
Standard TuLiP credential).

In order to support named attributes in TuLiP we developed the so called Prolog Markup
Language (PML) which facilitates the use of the structured XML content in a credential or
in a constraint atom. PML encodes the XML data using the so called field-notation [90]. The
field-notation is based on the observation that, syntactically, both XML and Prolog are based
on nested structures (nested elements in XML and function symbols in Prolog). By using
PML, one can easily use XML structured data in credential and constraint atoms:

student(ut, alice, student:[id:0123456]:[age:23,department:cs,study:int]).

Here, the third argument is a so called PML-Term. Below, we define PML formally. In
particular, we show how XML content can be transformed to the PML equivalent and vice
versa.

Definition 6.6.1 We say that the Prolog term T : As : C is a PML-Term if the following
conditions hold:

• T is an atomic Prolog ground term,

• As is a (possible empty) ground Prolog list of the form [a1 : v1, . . . , an : vn] where for
each i ∈ [1, n], ai, vi are terms,
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• C is an atomic Prolog ground term of arity zero or a list [c1, . . . , cn] where for each
i ∈ [1, n], ci is another PML-Term.

We call T the tag, C the content, and As = [a1 : v1, . . . , an : vn] the attribute list, where
each ai is called an attribute and vi is the corresponding value. If the attribute list is empty
we write T : C instead of T : [] : C.

Now we have to show how an XML element can be mapped to a PML term and vice
versa. We assume that each XML element has the following form:

el = <T a1 = “v1”, . . . , an = “vn”>C</T>

We call el a simple XML element. Here T is the name of a simple XML element, ai, i ∈
[1, n] is a simple XML attribute, vi, i ∈ [1, n] is the value of attribute ai, and C is either text
without any markup or another simple XML element.

Let L be a first order language, and let UL be the Herbrand universe for L. Let Strings
be the set of all possible (XML) strings of character data. We assume that there exists an
injection τ : Strings → UL which assigns a Prolog ground term to every strings of character
data. Similarly, we define ς : UL → Strings such that τ ◦ ς = idStrings . Thus, for any s, t
such that s ∈ Strings, t ∈ UL, if τ(s) = t then ς(t) = s. We denote τ(s) by sτ and ς(t) by
tς . Therefore, for any s ∈ Strings, t ∈ UL, we have that sτ

ς

= s.

Definition 6.6.2 (XML to PML) Let el=<e a1 = “v1”, . . . , an = “vn”>CONTENT</e>
be a simple XML element. The corresponding PML-Term, pml(el), is defined as follows:

• if CONTENT is of type text then

pml(el) = eτ : [aτ1 : vτ1 , . . . , a
τ
n : vτn] : CONTENTτ ;

• otherwise CONTENT = el1 . . . elm, m ≥ 0, and

pml(el) = eτ : [aτ1 : vτ1 , . . . , a
τ
n : vτn] : [pml(el1), . . . , pml(em)].

The position of the tags and attributes in a PML-Term is the same as the position of the
element tags and attributes in the corresponding XML document.

Given a PML-Term, we construct the corresponding simple XML element as follows:

Definition 6.6.3 (PML to XML) Let pl = e : [a1 : v1, . . . , an : vn] : CONTENT be a
PML-Term. The corresponding (simple) XML element, xml(pl), is constructed as follows:

• if CONTENT is an atomic ground term then

xml(pl) = <eς aς1 = “vς1”, . . . , aςn = “vςn”> CONTENTς</eς>;

• if CONTENT = [pl1, . . . , plm],m > 0 then

xml(pl) = <eς aς1 = “vς1”, . . . , aςn = “vςn”> xml(pl1) . . . xml(plm) </eς>;
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• if CONTENT = [ ] then

xml(pl) = <eς aς1 = “vς1”, . . . , aςn = “vςn”></eς>;

• undefined otherwise.

By the proper construction of the mappings τ and ς , every simple XML element can be
converted to a PML-term. Non-simple elements and also other XML entities, like XML Doc-
ument Type Definitions (DTD), schemas, XML Prolog, processing instructions, or comments
[97], cannot be converted to the PML form.

6.7 Related Work
We present the related work on Trust Management in Chapter 2 and the related work on Core
TuLiP in Chapter 4. To our best knowledge, no similar approach to handling distributed con-
straints and redundant credential storage exists. To some extent (non-distributed) constraints
can be specified in other trust management languages having logic based semantics. For in-
stance, constraints can be expressed in X -TNL [22] or to some extent in Delegation Logic
[64]. Also, constraints can be used in XACML [77] in the form of obligations.

6.8 Conclusions
In this chapter we define TuLiP, a trust management system based on Core TuLiP (see Chap-
ter 4). While Core TuLiP gives us strong fundaments, TuLiP provides the necessary exten-
sions and formalisms that make Core TuLiP deployable and suitable for practical use. In
particular, in TuLiP we formalise the notion of redundant credential storage introduced in
Chapter 5 where we present Standard TuLiP. TuLiP also extends Standard TuLiP in allow-
ing an unlimited number of arguments in a credential atom, supporting external constraint
solvers, and facilitating the use of named attributes by introducing the Prolog Markup Lan-
guage.

The concept of redundant storage is formalised by introducing the notion of bindings and
bound credentials, which draw a clear separation between theory and practice, between the
pure declarative meaning of a credential and how the credential is actually deployed and used
in a real system. Bound credentials are also the first class objects for our extended Lookup
and Inference AlgoRithm (LIAR).

In TuLiP we also formally define a constraint. In particular, we introduce a user-defined
constraint and we show how a user-defined constraint can be evaluated by introducing the
notion of a package containing the credential, all related used-defined constraint clauses and
the user-defined algorithm for evaluating the constraints occurring in the credential.

We prove that the extended LIAR is sound and complete with respect to the standard
theoretical logic programming semantics.

Future work The expressive power of TuLiP can be further extended by admitting nega-
tion in the language. We investigate non-monotonic polices in Chapter 3 where we extend
the RT family with the so called negation in context. Before adding non-monotic features
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to TuLiP, we also need to investigate what consequences this extension has on the storage
type system. Finally, we would like to incorporate into TuLiP the grouping and aggregate
operations which we describe in Chapter 7.





CHAPTER 7

LP with Flexible Grouping
and Aggregates Using
Modes

As we say in the Introduction (Chapter 1), a flexible trust management language should be
prepared to accommodate extensions allowing the user to model not only credential based
but also reputation based scenarios.

The role of a reputation system is to collect, distribute, and aggregate feedbacks concern-
ing past behaviour of the users. Each such a feedback is usually in the form of a trust metric
which is often from a domain which can be either infinite (continuous) or finite (multivalued).
Feedback is collected from a set of entities (often called recommenders) and then aggregated,
for example in order to compute the average trust level for the seller. For an aggregate oper-
ation to be useful it is often crucial to be able to select a subset of all the feedbacks we are
able to collect. For instance, one usually wants to compute average feedback for a concrete
user acting in a specific role, not for all the users and for all the roles the users play in the
system. It is then crucial to group the feedback according to some criteria.

TuLiP can deal with collecting and distributing feedback by using credential arguments.
However, TuLiP does not have grouping. In other words TuLiP does not allow us to collect
all instances of a query and group the results by one or more query argument.

Therefore, solving the problem of grouping is the first step we need to take if we want
to bridge credential-based and reputation-based trust management. Before we can do this in
TuLiP however, we must first solve the grouping problem in Logic Programming.

In this chapter we show how to perform grouping in Prolog using the well-known built-in
predicate bagof. To be included in TuLiP, we have to extend bagof with modes, and we have
to prove properties regarding groundness of computed answer substitutions and termination
which are crucial in trust management.
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7.1 Introduction

In a system designed to answer queries (be it a database or a logic program) an aggregate
function is designed to be carried out on the set of answers to a given query rather than on a
single answer. For example, in a Datalog program containing one entry per employee, one
needs aggregate functions to compute data such as the average age or salary of the employee,
the number of employees etc.

Grouping and aggregation are useful in practice, and paramount in database systems. In
reputation systems, the trust level is computed by aggregating over the feedbacks coming
from a specific subset of users. Therefore, if we want TuLiP to be able to express statements
such as “employee X will be granted access to confidential document Y provided that the
majority of senior executives recommends him”, we need to extend TuLiP with grouping and
aggregation.

Before we can introduce grouping and aggregation to TuLiP, we first have to investigate
how to implement grouping and aggregation in logic programming.

We could choose two possible approaches. In the first approach, grouping and aggrega-
tion is implemented as one atomic operation. Here, the result of the grouping operation (a
multiset in general) is not visible from the level of the syntax of the language. An advantage
of this approach is that multisets do not have to be introduced to the language as first-class cit-
izens. This simplifies the definition of the declarative semantics for the aggregate operations.
On the other hand, the grouping data are interesting on its own, especially in Trust Man-
agement where sometimes we need to query a specific subset of entities without performing
any aggregate operation on it. Therefore, in the second approach, grouping and aggregation
are two separate operations. This approach has several advantages. By separating grouping
from aggregation one can use the same data set for different aggregate operations. Also, the
performance of a trust management system can be improved as the actual network communi-
cation is usually far more costly than the evaluation of the grouping and aggregate operations.
Finally, the user has more freedom in defining her own aggregate operations. A disadvantage
of having grouping and aggregation as separate operations is that in order to be able to define
fully declarative semantics for grouping, one needs to extend the language with set-based
primitives like set membership (∈) or set-equation (=). This is not trivial task and significant
work in this area has been carried out (see Section Related Work). Alternatively, one can
use a more practical approach and use a list as a representation of a multiset. Because a list
is not a multiset (two lists with different order of the elements are two different lists), the
declarative semantics cannot be precise in this case. The Prolog built-in bagof is an example
of a grouping predicate that uses a list to represent a multiset.

We decided to follow the second approach where grouping and aggregation are two sepa-
rate operations. We found out that the the built-in bagof predicate is expressive enough to be
used as a grouping predicate for the trust management language of TuLiP. However, because
in TuLiP modes play a crucial role in the storage type system and they guarantee groundness
of answers, we have to add modes to the bagof predicate, which is not trivial. By having
a moded version of bagof, we can prove the important properties of the groundness of the
computed answer substitutions also for the programs containing grouping operations.

The chapter is structured as follows. In Section 7.2 we present the notational conventions
used in this chapter. In Section 7.3 we show how to do grouping in Prolog programs that do
not contain grouping subgoals and we show operational semantics by defining the computed
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answer substitutions for the grouping goal. In Section 7.4 we show how to use grouping
in programs containing grouping goals. Here we generalise the notion of well-moded logic
programs to those including grouping subgoals. In Section 7.5 we discuss the properties
of the well-moded programs containing grouping atoms. The chapter finishes with Related
Work in Section 7.6 and Conclusions in Section 7.7.

7.2 Preliminaries
The preliminaries on Logic Programs are presented in Chapter 4, Section 4.2. Here, we
study definite logic programs executed by means of LD-resolution, which consists of the
SLD-resolution combined with the leftmost selection rule. A multiset is a collection of ele-
ments that are not necessarily distinct [73]. The number of occurrences of an element x in a
multiset M is its multiplicity in the multiset, and is denoted by mult(x,M). When describ-
ing multisets we use the notation that is similar to that of the sets, but instead of { and } we
use [[ and ]] respectively. For example, M = [[ 1, 1, 2 ]] is a multiset where mult(1,M) = 2
and mult(2,M) = 1.

7.3 Grouping in Prolog
Prolog already provides some grouping facilities in terms of the built-in predicate bagof. The
bagof predicate has the following form:

bagof(Term,Goal,List).

Term is a prolog term (usually a variable, Goal is a callable Prolog goal, and List is a variable
or a Prolog list. The intuitive meaning of bagof is the following: unify List with the list
(unordered, duplicates retained) of all instances of Term such that Goal is satisfied. The
variables appearing in Term are local to the bagof predicate and must not appear elsewhere
in a clause or a query containing bagof. If there are free variables in Goal not appearing in
Term, bagof can be resatisfied generating alternative values for List corresponding to different
instantiations of the free variables in Goal that do not occur in Term. The free variables
in Goal not appearing in Term become therefore grouping variables. By using existential
quantification, one can force a variable in Goal that does not appear in Term to be treated as
local.

Let us look at some examples of grouping using the bagof predicate.

Example 7.1 Consider program P containing the following facts:

p(a,1).

p(a,2).

p(b,3).

p(b,4).

Now consider the following query:

Q: bagof(Y,p(Z,Y),X).

A: X = [1,2]
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Z = a ? ;

X = [3,4]

Z = b ? ;

no

Because Z is an uninstantiated free variable, bagof treats Z as a grouping variable and Y as
a local variable. Then, for each ground instance of Z, such that there exists a value of Y such
that p(Z,Y) holds, bagof returns a list X containing all instances of Y. In this case bagof
returns two lists: the first containing all instances of Y such that p(a,Y) holds, the second
containing all instances of Y such that p(b,Y) holds.

In the query above Y is a local variable. If we also want to make Z local, then we have to
explicitly use existential quantification for Z:

Q: bagof(Y,Z^p(Z,Y),X).

A: X = [1,2,3,4] ? ;

no

Now both Y and Z are local: Y because it appears in Term, Z because it is explicitly existen-
tially quantified.

In TuLiP, we use modes to guide the credential distribution and discovery and to guar-
antee groundness of the computed answer substitutions for the queries. Because we want
to state the groundness and termination results also for the programs containing grouping
atoms, we need a moded version of bagof. Therefore we introduce bagof_m, which a syn-
tactical variant of bagof and is moded. We decided to use a slightly different syntax for
bagof_m comparing to that of the original bagof built-in. First of all we want to make group-
ing variables explicit in the notation. Secondly, we want to eliminate the need of using the
existential quantification for making some of the variables local in the grouping atom. By
using different notation we can simplify the definition of local variables in the grouping atom
which makes the presentation easier to follow.

Definition 7.3.1 A grouping atom bagof_m is an atom of the form:

A = bagof_m(t, gl,Goal, x)

where t is a term, gl is a list of distinct variables each of which appears in Goal, Goal is an
atomic query (but not a grouping atom itself), and x is a free variable.

The bagof_m grouping atom has the same semantics as bagof, with one exception: the
original bagof fails if Goal has no solution while bagof_m returns an empty list (in other
words bagof_m never fails).

Definition 7.3.1 requires that Goal is atomic. This simplifies the treatment (in particular
the treatment of modes) and is not a real restriction, as one can always define new predicates
to break down a nested grouping atom into a number of grouping atoms that satisfy Definition
7.3.1.

Example 7.2 Consider again the program from Example 7.1. The bagof_m equivalent for
the query bagof(Y,p(Z,Y),X) is
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bagof_m(Y,[Z],p(Z,Y),X)

and for the query bagof(Y,Zˆp(Z,Y),X):

bagof_m(Y,[],p(Z,Y),X).

7.3.1 Semantics of simple bagof queries

A subtle difficulty in providing a reasonable semantics for bagof_m is due to the fact that we
have to take into consideration the multiplicity of answers. In a typical situation, bagof_m
will be used to compute e.g. averages, as in the query bagof_m(W,[Y],p(Y,W),X),
average(X,Z). To this end, X should actually be instantiated to a multiset of terms cor-
responding to the answers of the query p(Y,W). Number of researchers investigated the
problem of incorporating sets into a logic programming language (see Related Work for an
overview). Here, we follow a more practical approach and we represent a multiset with a
Prolog list. The disadvantage of using a list is that it is order-dependent: by permuting the
elements of a list one can obtain a different list. In the (natural) implementation, given the
query bagof_m(. . . , . . . ,Goal, x), the c.a.s. will instantiate x to a list of elements, the order of
which is dependent on the order with which the computed answer substitutions to the query
Goal are computed. This depends in turn on the order of the clauses in the program. This
means that we cannot provide the declarative semantics for our bagof_m construct unless we
introduce multisets as first-class citizens of the language.

The fact that we are unable to give fully declarative semantics of bagof_m does not pre-
vents us from proving important properties of groundness of the computed answer substitu-
tions and termination of programs containing grouping atoms. In this section, we give two
definitions of the computed answer substitution to bagof_m: first one – more “declarative”
– assumes that multisets of terms are part of the universe of discourse and that a multiset
operator [[ ]] is available, while the second relies on Prolog lists.

Definition 7.3.2 (c.a.s. to bagof_m using Multisets) Let P be a program, and A =
bagof_m(t, gl, Goal, x) be a query. The multiset [[α1, . . . , αk ]] of computed answer substi-
tutions of P ∪ A is defined as follows:

1. Let Σ = [[σ1, . . . , σn ]] be the multiset of c.a.s. of P ∪ Goal.

2. Let Σ1, . . .Σk be a partitioning of Σ such that two answers σi and σj belong to the
same partition iff glσi = glσj ,

3. For each Σi, let tsi be the multiset of terms obtained by instantiating t with the sub-
stitutions σi in Σi, i.e. tsi = [[ tσi | σi ∈ Σi ]], and let gli = glσ where σ is any
substitution from Σi.

4. For i ∈ [1, k], αi is the substitution {gl/gli, x/tsi}.

Example 7.3 Let P be a program containing the following facts: p(a,c,1), p(a,d,1),
p(a,e,3), p(b,c,2), p(b,d,2), p(b,e,4). Let A = bagof_m(Z,[Y],p(Y,W,
Z),X). Then P ∪A yields the following two computed answer substitutions: α1 = {Y/a,
X/[[ 1, 1, 3 ]]} and α2 = {Y/b,X/[[ 2, 2, 4 ]]}.
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As we said, since Prolog does not support multisets, in the sequel we use lists instead. The
disadvantage of using lists is that they are order-dependent, and that if a multiset contains
two or more different elements, then there exists more than one list “representing” it. Here
we simply accept this shortcoming and tolerate the fact that, in real Prolog programs, the
aggregating variable xwill be instantiated to one of the possible lists representing the multiset
of answers.

Definition 7.3.3 (c.a.s. to bagof_m using Lists) Let P be a program, and A =
bagof_m(t, gl, Goal, x) be a query. The multiset [[α1, . . . , αk ]] of computed answer substi-
tution of P ∪ A is defined as follows:

1. Let Σ = [[σ1, . . . , σn ]] be the multiset of c.a.s. of P ∪ Goal.

2. Let Σ1, . . .Σk be a partitioning of Σ such that two answers σi and σj belong to the
same partition iff glσi = glσj ,

3. For each i, let ∆i be an ordering on Σi, i.e. a list of substitutions containing the same
elements of Σi, counting multiplicities.

4. For each ∆i = [σi1 , . . . , σin ], let tsi be the list of terms obtained by instantiating t
with the substitutions in ∆i, i.e. tsi = [tσi1 , . . . , tσin ], and let gli = glσ where σ is
any substitution from ∆i.

5. for i ∈ [1, k], αi is the substitution {gl/gli, x/tsi}.

Example 7.4 Take the same program P as in Example 7.3 but with different order of the
clauses: p(a,c,1), p(a,e,3), p(a,d,1), p(b,e,4), p(b,c,2), p(b,d,2). Again,
let A = bagof_m(Z,[Y],p(Y,W,Z),X). Then P ∪ A yields the following two com-
puted answer substitutions using lists: α1 = {Y/a,X/[1,3,1]} and α2 = {Y/b,
X/[4,2,2]}.

In the sequel, we refer to this second definition. In order to bring this definition into
practice, i.e. to really compute the answer to a query bagof_m(t, gl,Goal, x), we have to
require that P ∪ Goal terminates.

7.4 Using bagof_m in queries and programs
In this section we discuss the use of bagof_m in programs. Here we are going to take advan-
tage of modes, which lets us prove groundness and termination properties.

We begin with the definition of a mode of the bagof_m atom.

7.4.1 Modes
The mode of a query bagof_m(t, gl,Goal, x) depends on the mode of the Goal, so it is not
fixed a priori. In addition, we introduce the concept of local variables.

Definition 7.4.1 Let A = bagof_m(t, gl,Goal, x). We define the following sets of input,
output and local variables for A:
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• VarIn(A) = VarIn(Goal),

• VarOut(A) = Var(gl) \VarIn(A) ∪ {x},

• VarLocal(A) = Var(A) \ (VarIn(A) ∪VarOut(A)),

For example, let A = bagof_m(q(W,Y,Z),[Y],p(W,Y,Z),X) be an aggregate atom,
and assume that the original mode of p is (In,Out ,Out). Then, VarIn(A) = {W},
VarOut(A) = {X,Y}, and VarLocal(A) = {Z}.

Now, we can extend the definition of well-moded program to take into consideration
bagof_m atoms; the only extra care we have to take is that local variables should not appear
elsewhere in the clause (or query).

Definition 7.4.2 (Well-Moded-Extended) We say that the clause H ←− B1, . . . , Bn is
well-moded if for all i ∈ [1, n]

VarIn(Bi) ⊆
i−1⋃
j=1

VarOut(Bj) ∪VarIn(H)
and

VarOut(H) ⊆
n⋃
j=1

VarOut(Bj) ∪VarIn(H).

and ∀Bi ∈ {B1, . . . , Bn}

VarLocal(Bi) ∩

 ⋃
j∈{1,...,i−1,i+1,...,n}

Var(Bj) ∪Var(H)

 = ∅.

A query A is well-moded iff the clause H ←− A is well-moded, where H is any (dummy)
atom of zero arity. A program is well-moded if all of its clauses are well-moded.

7.4.2 LD Derivations with Grouping

We extend the definition of LD-resolution to queries containing bagof_m atoms.

Definition 7.4.3 (LD-resolvent with grouping) Let P be a program. Let ρ : B,C be a
query. We distinguish two cases:

1. if B is a bagof_m atom and α is a c.a.s. for B in P then we say that B,C and P yield
the resolvent Cα. The corresponding derivation step is denoted by B,C α=⇒P Cα.

2. if B is a regular atom and c : H ← B is a clause in P renamed apart wrt ρ such that
H and B unify with mgu θ, then we say that ρ and c yield resolvent (B,C)θ. The

corresponding derivation step is denoted by B,C θ=⇒c (B,C)θ.

As usual, a maximal sequence of derivation steps starting from query B is called an LD
derivation of P ∪{B} provided that for every step the standardisation apart condition holds.

ut
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Example 7.5 The Financial Administration (fa) of the University of Twente makes
monthly summaries of the expenses made within several projects. Each expense is repre-
sented by a predicate expense/4, moded (In,Out ,Out ,Out), where the first argument
is the research group making the expense, the second argument represents the project to
be charged, the third argument is the amount used, and the last one is a time-stamp. A
research group within a department is denoted by research_group(Dept,RGroup)
moded (In,Out).

expense(dies,ishare,2200,’25-01-2007’).
expense(dies,ishare,2200,’25-02-2007’).
expense(caes,ishare,1000,’10-03-2007’).
expense(caes,ishare,2200,’25-03-2007’).
expense(dies,istrice,1200,’25-01-2007’).
expense(caes,istrice,1400,’25-02-2007’).
research_group(ewi,dies).
research_group(ewi,caes).

Now imagine that one is interested in the list of expenses made by each research group
in the ewi department grouped by the project and formatted as
expense(RGroup,Project,Amount). Then one can use the following query:

A = research_group(ewi,W),

bagof_m(expense(W,Y,Z),[Y],expense(W,Y,Z,V),X).

We have VarIn(A) = {W}, VarOut(A) = {X,Y}, and VarLocal(A) = {V,Z}. The
computed ground answers to this query are:

(1) research_group(ewi,dies),bagof_m(expense(dies,ishare,Z),
[ishare],expense(dies,ishare,Z,V),
[expense(dies,ishare,2200),expense(dies,ishare,2200)])

(2) research_group(ewi,dies),bagof_m(expense(dies,istrice,Z),
[istrice],expense(dies,istrice,Z,V),
[expense(dies,istrice,1200)])

(3) research_group(ewi,caes),bagof_m(expense(caes,ishare,Z),
[ishare],expense(caes,ishare,Z,V),
[expense(caes,ishare,1000),expense(caes,ishare,2200)])

(4) research_group(ewi,caes),bagof_m(expense(caes,istrice,Z),
[istrice],expense(caes,istrice,Z,V),
[expense(caes,istrice,1400)])

In order to compute the sum and average of the expenses made by a research group grouped
by the project, one may extend the program above with the following rules:

sum_avg(RGroup,Proj,Sum,Avg,M) :-
bagof_m(Z,[Proj],expense(RGroup,Proj,Z,Y),X),
sum(X,Sum,Len), Avg is Sum/Len.

sum([],0,0).
sum([H|T],Sum,Len) :- sum(T,Sum1,Len1), Sum is Sum1+H,

Len is Len1+1.
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Example 7.6 The query A from Example 7.5 has the following bagof representation:

A = research_group(ewi,W),

bagof(H,VˆZˆ(H=expense(W,Y,Z),expense(W,Y,Z,V)),X).

7.5 Properties

There are two main properties we can prove for programs containing grouping atoms: ground-
ness of computed answer substitutions and – under additional constraints – termination.

Groundness

Well-moded bagof_m atoms enjoy the same features as regular well-moded atoms. The fol-
lowing lemma is a natural consequence of Lemma 4.2.3.

Lemma 7.5.1 Let P be a well-moded program andA = bagof_m(t, gl,Goal, x) be a group-
ing atom in which gl is a list of variables. Take any ground σ such that Dom(σ) =
VarIn(A). Then each c.a.s. θ of P ∪ Aσ is ground on A’s output variables, i.e. Dom(θ) =
VarOut(A) and Ran(θ) = ∅.

Proof. By noticing that VarIn(A) = VarIn(Goal) and that each variable in the grouping
list gl appears in Goal, the proof is a straightforward consequence of Lemma 4.2.3.

Termination

Termination is particularly important in the context of grouping queries, because if Goal does
not terminate (i.e. if some LD derivation starting in Goal is infinite) then the grouping atom
bagof_m(t, gl,Goal, x) does not return any answer (it loops).

A concept we need in the sequel is that of terminating program; since we are dealing with
well-moded programs, the natural definition we refer to is that of well-terminating programs.

Definition 7.5.2 A well-moded program is called well-terminating iff all its LD-derivations
starting in a well-moded query are finite.

Termination of (well-moded) logic programs has been exhaustively studied by several
authors [13, 14, 23, 31, 45, 82]. Here we follow the approach of Etalle, Bossi, and Cocco
[45].

If the grouping atom is only in the top-level query and there are no grouping atoms in the
bodies of the program clauses then, to ensure termination, it is sufficient to require that P be
well-terminating in the way described by Etalle et al. [45]: i.e. that for every well-moded non
grouping atom A, all LD derivations of P ∪A are finite. If this condition is satisfied then all
LD derivations of P ∪ Goal are finite and then the query bagof_m(t, gl,Goal, x) terminates
(provided it is well-moded).

On the other hand, if we allow grouping atoms in the body of the clauses, then we have
to make sure that the program does not include recursion through a grouping atom. The
following example shows what can go wrong here.
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Example 7.7 Consider the following program:

(1) p(X,Z) :- bagof_m(Y,[X],q(X,Y),Z).
(2) q(X,Z) :- bagof_m(Y,[X],p(X,Y),Z).
(3) q(a,1).
(4) q(a,2).
(5) q(b,3).
(6) q(b,4).

Here p and q are defined in terms of each other through the grouping operation. Therefore
p(X,Z) cannot terminate until q(X,Y) terminates (clause 1). Computation of q(X,Y) in
turn depends on the termination of the grouping operation on p(X,Y) (clause 2). Intuitively,
one would expect that the model of this program contains q(a,1), q(a,2), q(b,3), and
q(b,4). However, if we apply the extended LD resolvent (Definition 7.4.3) to compute the
c.a.s. of p(X,Y) we see that the computation loops.

In order to prevent this kind of problems, to guarantee termination we require programs
to be aggregate stratified [60]. Aggregate stratification is similar to the concept of stratified
negation [9, 95], and puts syntactical restrictions on the aggregate programs so that recursion
through bagof_m does not occur. For the notation, we follow Apt et al. in [9]. Before we
proceed to the definition of stratified programs we need to formalise the following notions.
Given a program P and a clause H ←− . . . , B, . . . . ∈ P :

• if B is a grouping atom bagof_m(t, gl,Goal, x) then we say that Pred(H) refers to
Pred(Goal);

• otherwise, we say that Pred(H) refers to Pred(B).

We say that relation symbol p depends on relation symbol q in P , denoted p w q, iff (p, q)
is in the reflexive and transitive closure of the relation refers to. Given a non-grouping atom
B, the definition of B is the subset of P consisting of all clauses with a formula on the left
side whose relation symbol is Pred(B). Finally, p ' q ≡ p v q ∧ p w q means that p and
q are mutually recursive, and p A q ≡ p w q ∧ p 6' q means that p calls q as a subprogram.
Notice that A is a well-founded ordering.

Definition 7.5.3 A program P is called stratified if for every clause H ←− B1, . . . , Bm, in
it, and every Bj in its body we have that

• if Bj is a grouping atom Bj = bagof_m(. . . , . . . ,Goal, . . .) then Pred(Goal) 6'
Pred(H).

Given the finiteness of programs it is easy to show that a program P is stratified iff there
exists a partition of it P = P1 ∪ · · · ∪ Pn such that for every i ∈ [1, . . . , n], and every clause
cl = H ←− B1 . . . , Bm ∈ Pi, and every Bj in its body, the following conditions hold:

1. if Bj = bagof_m(. . . , . . . ,Goal, . . .) then the definition of Pred(Goal) is contained
within

⋃
j<i Pj ,

2. otherwise the definition of Pred(B) is contained within
⋃
j≤i Pj .
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Stratification alone does not guarantee termination. The following (obvious) example
demonstrates this.

Example 7.8 Take the following program:

q(X,Y) :- r(X,Y).
r(X,Y) :- q(X,Y).
p(Y,X) :- bagof_m(Z,[Y],q(Y,Z),X).

Notice that q ' r. This program is (aggregate) stratified, but the query p(Y,X) will not
terminate.

In order to handle the problem of Example 7.8 we need to modify slightly the classical
definition of termination. The following definition relies on the fact that the programs we are
referring to are stratified.

Definition 7.5.4 (Termination of Aggregate Stratified Programs) Let P be an aggregate
stratified program. We say that P is well-terminating if for every well-moded atom A the
following conditions hold:

1. All LD derivations of P ∪A are finite,

2. For each LD derivation δ of P ∪A, for each grouping atom bagof_m(t, gl, Goal,
x) selected in δ, P ∪ Goal terminates.

The classical definition of termination considers only point (1). Here however, we have
grouping atoms which actually trigger a side goal which is not taken into account by (1)
alone. This is the reason why we need (2) as well. Notice that the notion is well-defined
thanks to the fact that programs are stratified.

To guarantee termination, we can combine the notion of stratified program above with
the notion of well-acceptable program introduced by Etalle, Bossi, and Cocco in [45] (other
approaches are also possible). We now show how.

Definition 7.5.5 Let P be a program and let BP be the corresponding Herbrand base. A
function | | is a moded level mapping iff

1. it is a level mapping for P , namely it is a function | | : BP → N, from ground atoms
to natural numbers;

2. if p(t) and p(s) coincide in the input positions then |p(t)| = |p(s)|.

For A ∈ BP , |A| is called the level of A. ut

Condition (2) above states that the level of an atom is independent from the terms filling
in its output positions. Finally, we can report the key concept we use in order to prove well-
termination.

Definition 7.5.6 (Weakly- and Well-Acceptable [45]) Let P be a program, | | be a level
mapping and M a model of P .
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• A clause of P is called weakly acceptable (wrt | | and M ) iff for every ground instance
of it, H ←− A, B,C,

if M |= A and Pred(H) ' Pred(B) then |H| > |B|.

P is called weakly acceptable with respect to | | and M iff all its clauses are.

• A program P is called well-acceptable wrt | | and M iff | | is a moded level mapping,
M is a model of P and P is weakly acceptable wrt them. ut

Notice that a fact is always both weakly acceptable and well-acceptable; furthermore if MP

is the least Herbrand model of P , and P is well-acceptable wrt | | and some model I then, by
the minimality of MP , P is well-acceptable wrt | | and MP as well. Given a program P and
a clause H ←− . . . , B, . . . in P , we say that B is relevant iff Pred(H) ' Pred(B). For
the weakly and well-acceptable programs the norm has to be checked only for the relevant
atoms, because only the relevant atoms might provide recursion. Notice then that, because we
additionally require that programs are stratified, grouping atoms in a clause are not relevant
(called as subprograms).
We can now state the main result of this section.

Theorem 7.5.7 Let P be a well-moded aggregate stratified program.

• If P is well-acceptable then P is well-terminating.

Proof. (Sketch). Given a well-moded atom A, we have to prove that (a) all LD derivations
starting in A are finite and that (b) for each LD derivation δ of P ∪A, for each grouping
atom bagof_m(t, gl,Goal, x) selected in δ, P ∪ Goal terminates.

To prove (a) one can proceed exactly as done in [45], where the authors use the same
notions of well-acceptable program: the fact that here we use a modified version of LD-
derivation has no influence on this point: since grouping atoms are resolved by removing
them, they cannot add anything to the length of an LD derivation.

On the other hand, to prove (b) one proceeds by induction on the strata of P . Notice
that at the moment that the grouping atom is selected, Goal is well-moded (i.e., ground in
its input position). Now, for the base case if Goal is defined in P1, then, by (a) we have that
all LD-derivations starting in Goal are finite, and since we are in stratum P1 (where clause
bodies cannot contain grouping atoms) no grouping atom is ever selected in an LD derivation
starting in Goal. So P ∪ Goal terminates.

The inductive case is similar: if Goal is defined in Pi+1, then, by (a) we have that all
LD-derivations starting in Goal are finite, and since we are in stratum Pi+1 if a grouping
atom bagof_m(t′, gl′, Goal′, x′) is selected in an LD derivation starting in Goal, we have
that Goal′ must be defined in P1 ∪ · · · ∪ Pi, so that – by inductive hypothesis – we know
that P ∪Goal′ terminates. Hence the thesis. ut

7.6 Related Work
Aggregate and grouping operations are given lots of attention in the logic programming com-
munity. In the resulting work we can distinguish two approaches: (1) in which the grouping
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and aggregation is performed at the same time, and (2) - which is closer to our approach -
in which grouping is performed first returning a multiset and then an aggregation function is
applied to this multiset.

In the first approach an aggregate subgoal has the following form:

group_by(p(x, z), [x], y = F(E(x, z))).

This is equivalent to:

y = F([[E(x, z) : ∃(z)p(x, z) ]]).

Here x are the grouping variables, p(x, z) is a so called aggregation predicate, and E(x, z)
is a tuple of terms involving some subset of the variables x ∪ z. F is an aggregate function
that maps a multiset to a single value. The variables x and y are free in the subgoal while z
are local and cannot appear outside the aggregate subgoal. In other words, if a variable does
not appear on the grouping list, this variable is local. For instance, given a program P =
{p(a,1),p(a,2),p(b,3),p(b,4)}, the query group_by(p(X,Z),[],Y=sum(Z))
returns the answer Y=10 whereas the query group_by(p(X,Z),[X],Y=sum(Z)) re-
turns two answers: X=a, Y=3 and X=b,Y=7. In the former case X and Z are both local
variables while in the latter case only Z is local. By requiring that each variable appearing
in the aggregation predicate but not appearing on the grouping list to be local, group_by is
slightly more restrictive than bagof in this respect. Consider the following query:

q(Y), bagof(Z,p(Y,Z),X), sum(X,W).

and its bagof_m equivalent (assuming that mode(p/2) = (In,Out) and mode(q/1) = (Out)):

q(Y), bagof_m(Z,p(Y,Z),[Y],X), sum(X,W).

This cannot be done with group_by because the query:

q(Y), group_by(p(Y,Z),[],W=sum(Z)).

is not a valid one because Y is a local variable and cannot appear outside the group_by atom.
The early declarative semantics for group_by was given by Mumick et al. [73]. In this

work, aggregate stratification is used to prevent recursion through aggregates. Later, Kemp
and Stuckey [60] provide the declarative semantics for group_by in terms of well-founded
and stable semantics. They also examine different classes of aggregate programs: aggregate
stratified, group stratified, magical stratified, and also monotonic and semi-ring programs.
From a more recent work, Faber et al. [47] also relay on aggregate stratification and they
define a declarative semantics for disjunctive programs with aggregates. They use the in-
tentional set definition notation to specify the multiset for the aggregate function. Denecker
et al. [39] point out that requiring the programs to be aggregate stratified might be too re-
strictive in some cases and they propose a stronger extension of the well-founded and stable
model semantics for logic programs with aggregates (called ultimate well-founded and stable
semantics). In their approach, Denecker et al. use the Approximation Theory [38]. The work
of Denecker et al. is continued and further extended by Pelov et al. [81].

In the second approach, where the grouping is separated from aggregation (as in our ap-
proach), the grouping operation is represented by an intentional set definition. This approach
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uses an (intentional) set construction operator returning a multiset of answers which is then
passed as an argument of an aggregate function:

m = [[E(x, z) : ∃(z)p(x, z) ]], y = F(m).

To be handled correctly (with a well defined declarative semantics), this approach requires
multisets to be introduced as first-class citizens of the language.

Dovier, Pontelli, and Rossi [41] introduce intentionally defined sets into the constraint
logic programming language CLP ({D}) where D can be for instance FD for finite domains
or R for real numbers. In their work, Dovier et al. concentrate on the set-based operations
and so, they do not consider multisets directly. Interestingly, they treat the intentional set
definition as a special case of an aggregate subgoal in which F is a function which given a
multiset m as an argument returns the set of all elements in m - i.e. F removes duplicates
from m.

Introducing (multi)sets to a pure logic programming language (i.e. not relaying on a CLP
scheme) is also a well-researched area. From the most prominent proposals, Dovier et al. [40]
propose an extended logic programming language called {log} (read “set-log”) in which sets
are first-class citizens. The authors introduce the basic set operations like set membership ∈
and set equality = along with their negative counterparts /∈ and 6=. Also, in the related work,
Dovier et al. [40] show a nice overview of other logic programming systems incorporating
set primitives. Concerning multisets directly, Ciancarini et al. [35] show how to extend a
logic programming language with multisets. They strictly follow the approach of Dovier et
al. [40].

Important to notice here, is that these earlier works of Dovier et al. and Ciancarini et al.
(as well as most of other related work on embedding sets in a logic programming language -
see Dovier et al. [40, 41] for examples) focus on the so called extensional set construction -
which basically means that a set is constructed by enumerating the elements of the set. This
is not suitable for our work as this does not enables us to perform grouping.

Moded Logic Programming is well-researched area [12, 15, 71, 93]. However, modes
have been never applied to aggregates. We also extend the standard definition of a mode to
include the notion of local variables. By incorporating the mode system we are able to state
the groundness and termination results for the bagof -like operations.

7.7 Conclusions
In this chapter we study the grouping operations in Prolog using the standard Prolog built-in
predicate bagof. Grouping is needed if we want to perform aggregation, and we need ag-
gregation in TuLiP to be able to model reputation systems. In order to make the grouping
operations easier to integrate with TuLiP, we add modes to bagof (we call the moded version
bagof_m). We extend the definition of a mode by allowing some variables in a grouping atom
to be local. Finally, we show that for the class of well-terminating aggregate stratified pro-
grams the basic properties of well-modedness and well-termination also hold for programs
with grouping.



CHAPTER 8

Conclusions and Future
Work

We distinguish two approaches towards trust management: reputation based and credential
based trust management. In reputation based trust management a security decision is based
on past user behaviour provided in terms of the feedback from other users. Feedback is
usually a subjective opinion of a user about another user based on the previous interaction
between those two users. In reputation based trust management feedback is also called a
recommendation. Because of its subjective nature, a recommendation is rarely a binary yes
or no, but the feedback can have values from an arbitrary continuous domain. In credential
based trust management a security decision is based on security credentials. Every user can
issue a credential that can then be used by other users. There is no fussiness in answering an
authorisation request: the answer is either yes or no (or sometimes don’t know).

In this thesis we study credential based distributed trust management. In (credential
based) distributed trust management, the credentials are not only issued by different users,
but can also be stored in a distributed way: a single user may store her own credentials,
but also the credentials issued by other users. In distributed trust management there is no
central repository, where the users should store their credentials. A successful distributed
trust management system should not only allow the users to write the credentials, but also
help the user to distribute the credentials in such a way that the credentials can be found
later for the compliance checking. Therefore, a distributed trust management system should
satisfy the following requirements:

1. a simple yet expressive trust management language,

2. a compliance checker,

3. support for the distributed credential storage.

Most of the existing trust management systems do not satisfy all of these requirements at the
same time. For instance, the PeerTrust trust management system [74], provides an expressive
trust management language and a compliance checker capable of evaluating the credentials
but does not support credential discovery. On the other hand, the RT family of trust manage-
ment languages [66] provides a storage type system to support distributed credential storage,
but the trust management language is complex when sophisticated policies need to be mod-
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elled. Our aim therefore is to design a generic open-ended distributed trust management
system that can satisfy all the above stated requirements.

In this thesis we achieve this aim successfully. Our contributions, which all together lead
us to this positive conclusion, are the following:

1. We introduce a new member to the RT family of trust management languages: RT	.
The RT framework is a family of trust management languages with gradually increas-
ing expressive power. Each language from the RT family is monotonic, which means
that RT does not support negation. We show in Chapter 3 that some policies (likes
separation of duty) can be expressed naturally only if we admit at least a restricted
form of negation to the language. RT tries to fix the problem in the more expressive
members of the family by introducing the so called “manifold roles”. A manifold role
can contain not only entities but also collections of entities. Unfortunately, the use
of manifold roles makes the language harder to understand and it becomes difficult to
model more sophisticated scenarios such as thresholds or separation of duty. RT	 sup-
ports a restricted form of negation (we call it “negation in context”) by means of a new
operator	. The restricted form of negation in RT	 is sufficient to model sophisticated,
realistic policies like thresholds or separation of duty in a natural way without all the
complexity brought by an unlimited form negation.

2. We design a distributed trust management system TuLiP. A disadvantage of RT (so
also of RT	) is that the syntax and the semantics are not uniform across different
members of the family, which makes the syntax and the semantics complex with the
more expressive members. Because our goal is to have a trust management systems
which provides a simple yet expressive language for writing credentials, instead of
patching RT by adding new members, which would result in a more complex language,
we start from scratch and build our own trust management system TuLiP. TuLiP has
a powerful trust management language based on logic programming, and offers the
same uniform syntax regardless of the complexity of the policy modelled. Another
disadvantage of RT is that the storage type system is not fully reflected in the semantics
of the language. By contrast, in TuLiP it is impossible to write a credential without
thinking about the credential storage. In our approach the mode associated with a
credential atom indicates where the corresponding credential should be stored so that
it can be found later when needed. The storage information is therefore an integral part
of our trust management language. Finally, TuLiP comes with a compliance checker,
LIAR, which, besides doing a typical compliance checker reasoning job, also discovers
and fetches the credentials in a goal oriented way using the mode information. We
prove that LIAR is sound and complete w.r.t. to the declarative semantics of TuLiP.

3. We show how to implement and deploy TuLiP on a distributed system. We provide a
proof of concept implementation consisting of LIAR, a number of credential servers,
a mode register, and the user interface. In our implementation we show that TuLiP can
be realised using of-the-shelf technology with minimal requirements on the underlying
infrastructure. Our system does not depend on a centralised authority (the mode regis-
ter is centralised at the moment but it is not required when doing credential discovery)
and it does not require a heavy public key infrastructure (PKI). We also provide a demo
showing the concrete application of TuLiP in a distributed P2P content management
system.
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We learnt many lessons while working on the thesis. Here we mention only the most
important ones. On the theoretical side, we learnt how difficult is to add non-monotonic fea-
tures to the language. Most of the existing trust management languages avoid non-monotonic
extensions (like negation) in order to avoid all the complexity brought by these extensions.
There is a number of available semantics for logic programming with negation but it is not
trivial to decide which is the right one for the distributed trust management. When work-
ing on non-monotonic extensions in Chapter 3, we learnt that giving a binary “yes” or “no”
answer to an authorisation query is not always possible - sometimes we have to deal with
simple “I don’t know”. Proving soundness and completeness of LIAR shown us how im-
portant it is to carefully consider the range of features that the system should provide. For
instance, adding an extensive support for subject-traceable credential chains resulted in a
higher complexity of the operational semantics (and a more difficult proof of soundness and
completeness of LIAR). We believe that the operational semantics could be simplified if one
accepts a restricted support for subject traceable credentials.

Finally, the practical work was inspiring and allowed us to identify the problems we
had in the theory which would be hard to spot without touching the “real thing”. This is
especially true for the LIAR algorithm, for which it took several iterations before having
fully operational version which could be proven sound and complete. In our practical work
we used several programming languages and technologies like Prolog, Python, Action Script
(Flash), PHP, HTML, or CSS. Our implementation amounts to approximately 10000 lines
of source code including many comments and the repeated code, which means that a more
professional (commercial) implementation can be build quickly by a small team.

Future Directions TuLiP is not yet complete and there is still work to be done. The
most important extension is incorporating support for reputation based trust management
into TuLiP. To do this, one needs to add support for grouping and aggregation to the trust
management language as these are important elements of each reputation system. In Chapter
7 we show how to handle grouping and aggregation in logic programming in such a way that
important properties of groundness and termination are preserved. By showing this, we open
the door for the future research of how to integrate grouping and aggregation into TuLiP
and to which extent one can model the scenarios from the world of reputation systems in
TuLiP. The Integration of Reputation Systems and credential based Trust Management is not
the only way the TuLiP trust management system can be improved or extended. Below we
enumerate the most important directions:

1. The first important research direction is supporting non-monotonic features in TuLiP as
pioneered in RT	. This research should concentrate on the following two aspects: (1)
providing appropriate declarative semantics, (2) extending the storage type system, and
(3) updating the LIAR algorithm. One can further distinguish between using stratified
and non-stratified programs. The former simplifies the definition of the declarative
semantics and also is aligned with the semantics of programs with grouping which we
show in Chapter 7. On the other hand, having non-stratified programs may actually
simplify the design of the LIAR algorithm that in such a case does not have to deal
with the distributed stratification. An interesting challenge would be also to design the
storage type system for RT	.

2. Another interesting research direction is improving the privacy of the users in TuLiP.
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Fig. 8.1: Next Generation (NG) TuLiP
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Here, the user privacy may be improved if we avoid unnecessary exchange of the
credentials and instead only send queries and receive answers. This leads to a more
distributed computational model, where many entities actively participate in answering
the query - each one doing only a small amount of work. The research should also
answer the question when such a scenario is applicable (in other words, when we do
have to send the credentials and when we can avoid it). Finally, one may need to
investigate how to build a distributed version of the LIAR algorithm which can handle
cycles and stratification correctly.

3. TuLiP can be used for Trust Negotiation by treating credentials as ordinary resources
Here one may want to have an explicit support for negotiation policies, which allow us
to describe when and which credentials can be revealed in the same way as we define
standard credentials.

4. TuLiP is close to becoming a real world system. It still requires several improvements
at the implementation level. Improving the implementation of the TuLiP trust manage-
ment system may give new insight into what is still missing or what is redundant. This,
in turn, may lead to new research questions. Currently, we see the need to investigate
the following implementation-level issues: (a) consistency of the mode assignment
(b) supporting multiple credential formats, (c) encryption, helper tools, graphical user
interfaces, (d) plugable infrastructure - open architecture (going open source?).

Figure 8.1 draws the features of the Next Generation TuLiP on the canvas of the work
already carried out.
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Samenvatting

In de sterk gedistribueerde en heterogene “internet wereld” van vandaag de dag is het delen
van resources een dagelijkse activiteit van elke internet gebruiker geworden. We kopen en
verkopen spullen over het internet, delen onze vakantiefoto’s via facebook™, “tuben” onze
thuisvideo’s op You Tube™ en wisselen onze interesses en gedachtes uit via blogs. We
podcasten, netwerken via Linkedin™, delen bestanden op P2P netwerken en zoeken advies
op talrijke online discussie groepen. Hoewel we in de meeste gevallen een zo groot mogelijk
groep gebruikers willen bereiken, realiseren we ons vaak dat sommige informatie privé moet
blijven, of op zijn minst beperkt tot een zorgvuldig gekozen publiek. Toegangsbeheer is niet
langer het domein van de computerbeveiligings expert maar iets wat we elke dag tegenkomen.

In een standaard toegangsbeheer scenario heeft de resource leverancier de volledige con-
trole over de beschermde resource. De beheerder beslist wie toegang heeft tot de resource
en welke acties met de resource mogelijk zijn. De groep entiteiten die toegang heeft tot een
beschermde resource kan statisch gedefinieerd worden, en is vooraf bekend bij de resource
beheerder. Hoewel nog steeds geldig, in veel gevallen is een dergelijk scenario vandaag de
dag te beperkend. De toegangbeheerder is niet alleen vereist, maar wil vaak ook de grootst
mogelijke groep gebruikers bereiken en veel van deze gebruikers blijven anoniem voor the
leverancier. Er is een flexibelere aanpak van toegangsbeheer nodig.

Trust Management is een recente toegangsbeheermethode waarin het autorisatie besluit
gebaseerd is op beveiligingswaarmerken (credentials). In een waarmerk drukt de uitgever
(issuer) van het waarmerk attributen (rollen, eigenschappen) van de ontvanger (subject) van
het waarmerk uit. De waarmerken worden geschreven in een trust management taal om er
voor te zorgen dat waarmerken dezelfde betekenis hebben voor alle gebruikers. Een speciaal
algoritme, genaamd compliance checker, wordt gebruikt om vast te stellen of een set van
waarmerken een actie op een beschermde resource toelaat. Een belangrijke eigenschap van
trust management is dat iedere entiteit waarmerken mag uitgeven.

In de oorspronkelijke trust management aanpak worden waarmerken op bekende locaties
opgeslagen zodat het compliance checker algoritme weet waar te zoeken voor waarmerken.
Een andere aanpak is om de gebruikers zelf de waarmerken te laten bewaren. Gedistribu-
eerde opslag van de waarmerken voorkomt de single point of failure geïntroduceerd door
de centrale waarmerken depot maar vereist dat de het compliance checker algoritme weet
waar de waarmerken te vinden zijn. Een ander probleem van de gedistribueerde aanpak is
dat het ontwerp van een correct waarmerk ontdekkingsalgoritme beperkingen oplegt aan de
uitdrukkingskracht van de trust management taal.

In dit proefschrift laten we zien dat het mogelijk is om een generiek en open trust mana-
gement system te bouwen dat een sterke uitdrukkingskracht combineert met gedistribueerde
waarmerkopslag. Om precies te zijn; we laten zien hoe een trust management systeem te
bouwen met:

• een formele maar toch expressieve trust management taal voor het uitdrukken van
waarmerken,
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• een compliance checker algoritme voor het vaststellen van autorisatie aan de hand een
gegeven verzameling waarmerken,

• ondersteuning voor gedistribueerde waarmerkenopslag.

We noemen ons trust management systeem TuLiP (Trust management based on Logic Pro-
gramming).

In dit proefschrift geven we ook aan hoe TuLiP gebruikt kan worden in een gedistribu-
eerd inhoudsbeheersysteem (we gebruiken foto’s als inhoud in onze implementatie). Door
gebruik van deze aanpak kan TuLiP bestaande P2P inhoud deling services verbeteren door
persoonlijk, schaalbare en wachtwoordvrije toegangscontrole aan de gebruikers te bieden.
Door de architectuur te decentraliseren zouden systemen zoals facebook™ of You Tube™
ook kunnen profiteren van TuLiP. Door het eenvoudig te gebruiken en schaalbare toegangs-
controle mechanisme, maakt TuLiP het delen mogelijk van persoonlijk en auteursrechtelijk
beschermd materiaal via een uniform en bekende gebruikers interface. Hier kan TuLiP bu-
siness modellen mogelijk maken waarin aanbevolen klanten en klanten van bevriende be-
drijven deelnemen in geïndividualiseerde klantenbindingsprogrammas (zoals aantrekkelijke
kortingen). Wij zijn overtuigd dat Tulip, door de natuurlijke ondersteuning van samenwer-
ken van autonome entiteiten door middel van gedistribueerde waarmerken, het valideren van
business relaties eenvoudiger maakt en hierdoor het ontstaan van nieuwe business modellen
bevordert.
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